Evaluation of different solvent extracts of sweet flag rhizome, *Acorus calamus* (L.) on pulse beetle, *Callosobruchus maculatus* (F.)
M. Saranya, S.J. Nelson, M. Paramasivam and C.A. Mahalingam ... 373

Assessing the changes in soil properties and possible ground water pollution with application of primary treated distillery spentwash
R. Suma .. 383

Productivity and resilience based indices for identification of water stress resilient genotypes in cowpea (*Vigna unguiculata* L.)
Musharib Gull, Parvaze A. Sofi, R.R. Mir, Asmat Ars and S.M. Zargar ... 391

Effect of elicitors on growth, biochemical and antioxidant activity in two varieties of wheat (*Triticum aestivum* L.) under drought
Amrita Thakur, Nilima Kumari and Vinay Sharma ... 398

Nitrogen fertigation schedule and irrigation effects on productivity and economics of spring sugarcane
Hari Singh, R.K. Singh, R.N. Meena and Vikram Kumar ... 405

Standardisation of tree spacing and organic manure dose for growing garden pea under *Grewia optiva* D. based agri silviculture system
S. Kar, K.S. Pant, A. Chandel and G.D. Dubey .. 411

Comparative analysis of heavy metal contamination in some common tubers and vegetables of Kerala
Silvy Mathew and P.T. Teenamol .. 417

Effect of urea, bio-fertilizers and their interaction on the growth, yield and yield attributes of *Cyamopsis Tetragonoloba*
Asma Gul, Abdul Salam, Muhammad Siddique Afridi, Naila Khan Bangash, Fawad Ali, Muhammad Yuosaf Ali, Shumaila Khan and Ramsha Mubeen ... 423

Available macronutrient status of soils in various cropping systems of Thotapalli irrigation project ayacut of North coastal Andhra Pradesh
K. Himabindu, P. Gurumurthy, P.R.K. Prasad and M. Martin Luther .. 429

Effect of dates and methods of winter rice (*Oryza sativa* L.) transplanting on relayed niger (*Guizotia abyssinica*) and soil health
Anju Mala Deka, P.C. Bora, H. Kalita, A.S.N. Zaman and Pompi Saikia .. 435
Impact of saline water irrigation plus potassium sulphate application on growth and yield potential of pepper plants
Mahmoud H. Rahil, Sami A. Mousa and Daoud I. Abu Safieh

Loop Mediated Isothermal Amplification (LAMP) for Nosema bombycis diagnosis by Small subunit Ribosomal RNA (SSU rRNA) gene
S. Kampliw and M. Monthatong

Insecticide resistance studies of Cypermethrin 25EC and Chlorpyriphos 20EC against Spodoptera litura fabricius, 1775 (Lepidoptera: Noctuidae)
Rupa Sule and Dolly Kumar

Field screening of greengram (Vigna radiata L.) genotypes for resistance against Urdbean Leaf Crinkle Virus
A. Sravika, J.S. Kennedy, D. Rajabaskar and E. Rajeswari

Evaluation of cropsyst model for yield and water productivity of chickpea
Ramesh Kumar, R.S. Yadav, Amit Kumawat, V.S. Rathore, N.D. Yadava and Vinay Nangia

Effect of glass industry effluent on seed germination and biochemical parameters of Glycine max (Soyabean)
Prachi Rathi and Sangeeta Madan

Preliminary afforestation effect of the mixed forest Betula alnoides in southern Fujian China
Bihua Chen, Bijiang Fang, Guobiao Chen, Qinggen Chen, Xinhua Dai, Yongjian Lin, Xiaolong Hong, Juan Zhang and Yuqing Lin

Changes in growth, biochemical components and antioxidant genes expression in rice seedling (Oryza sativa L.) cultivar ‘IR64’ under salt stress
M. Pharmawati and I.M.A.S. Wijaya

Rain sensor capsule (RSC) for farmers during un-seasonal rains in post-harvesting period
Singuru Rajesh

Effect of different soil moisture regimes and salinity level on growth and yield in mustard

Charcoal and compost application induced changes in growth and yield of wheat (Triticum aestivum L.)
Jamal Nasar, Ashfaq Alam, Muhammad Zubair Khan and Bilal Ahmed

Assessment of drip lateral design methods based on uniformity coefficient
J. Ramachandran, V. Ravikumar and R. Lalitha
Indian Journal of Agricultural Research

Country: India

Subject Area and Category:
- Agricultural and Biological Sciences
- Agronomy and Crop Science
- Horticulture
- Plant Science
- Soil Science

Publisher: Agricultural Research Communication Centre

Publication type: Journals

ISSN: 03678245, 0976058X

Coverage: 1990-ongoing

H Index: 4

Join the conversation about this journal

Indian Journal of Agricultural Research

- Agronomy and Crop Science
- Horticulture
- Plant Science
- Soil Science

2013 2014 2015 2016 2017 2018

Total Cites Self-Cites

External cites per Doc Citations per document

% International Collaboration Citable documents Non-citable documents

Cited documents Uncited documents

Q3

SJR 0.27

powered by scimago.com

Show this widget in your own website

Just copy the code below and paste within your html code:

<iframe width="640" height="480" src="https://www.scimagojr.com/inward/citations.php?issn=03678245,0976058X&journal=Indian%20Journal%20of%20Agricultural%20Research" frameborder="0" scrolling="no"></iframe>
Pharmawati, Made

Affiliation(s)
Universitas Udayana, Bali, Indonesia

Affiliation detail

Subject areas
- Agricultural and Biological Sciences
- Chemistry, Genetics and Molecular Biology
- Computer Science
- Education
- Earth and Planetary Sciences
- Social Sciences
- Medicine
- Physics and Astronomy
- Mathematics
- Chemical Engineering
- Engineering
- Pharamaceutics
- Chemistry
- Energy

Documents by author
23

Total citations
347 by 236 documents

H-index
8

Profile actions
- Edit author profile
- Connect to ORCID
- Alerts
- Set document alert
- Learn more about Scopus Profiles

23 Documents Cited by 236 documents 39 co-authors Topics

Document title
- Selecting Potential Neutrogenic Drug Leads from Constituents of Various Venomous Marine Cone Snails in Bali, Indonesia Open Access

Authors
Sudarmi, A.A.R., Sukiyawati, N.M., Mahendri, B.K., ..., Phuong, M.A., Mahendri, G.N.

Year
2019
Source
ACS Omega
Cited by
0

Document title
- Response of rice genotypes to zinc fertilizer detected using RAPD Open Access

Authors
Defianti, M.R., Astariani, L., Pharmawati, M.

Year
2019
Source
IOP Conference Series: Earth and Environmental Science
Cited by
0

Document title
- Challenges in Molecular Identification of Endophytonal Fungi from Rhizosphere of Cashew Nut Open Access

Authors
Pharmawati, M., Probaowan, M.W.

Year
2019
Source
IOP Conference Series: Earth and Environmental Science
Cited by
0

Document title
- Molecular Identification and Genetic Diversity of Thalassia hemprichii Through DNA Barcoding Using Internal Transcribed Spacer Gene (ITS) from Aceh Bay Jaya, Indonesia Open Access

Authors
Faiz, A.N., Harliam, T., Pharmawati, M., Marplaini, B.

Year
2019
Source
IOP Conference Series: Earth and Environmental Science
Cited by
0

Document title
- Changes in growth, biochemical components and antioxidant gene expression in rice seedling (Oryza sativa L.) cultivar IR64 under salt stress

Authors
Pharmawati, M., Wikiepa, M.A.A.S.

Year
2019
Source
Indian Journal of Agricultural Research
Cited by
0
Salinity IR64

by Made Pharmawati
Changes in growth, biochemical components and antioxidant genes expression in rice seedling (Oryza sativa L.) cultivar ‘IR64’ under salt stress

M. Pharmawati*1 and I.M.A.S. Wijaya1

Biology Department, Faculty of Mathematics and Natural Sciences, Udayana University, Kampus Bukit Jimbaran, Bali, 80361, Indonesia.

Received: 25-11-2018 Accepted: 30-01-2019

DOI: 10.18805/IJARc.A-399

ABSTRACT

One of abiotic stresses that affects rice growth is salinity. Plant must develop adaptation process which includes morphological, biochemical and molecular changes. This research aimed to evaluate morpho-biochemical and molecular responses of rice ‘IR64’ to several levels of salinity stress at seedling stage. Seedlings of ‘IR64’ were grown in a hydroponic system and treated with different levels of salinity stress (4dSm−1, 6dSm−1 and 12dSm−1) for seven days. Responses were recorded on the final day of salt treatments. Gene expression analyses were done by semi-quantitative RT-PCR. RNA was extracted using RNase plant mini kit (Qiagen) and cDNA was synthesized using GoScript™ Reverse Transcription System (Promega). Results showed that shoot height and fresh weight decreased under salt stress. At plants treated with salt, the chlorophyll contents were lower than that of control plants, while MDA levels were higher in salt treated plants. Semi-quantitative PCR for MnSOD1 and Cu/ZnSOD1 revealed that MnSOD1 and Cu/ZnSOD1 expressions increased under salt stress which indicated oxidative stress defence, with the highest expression at 4dSm−1 and 6dSm−1 treatment, respectively.

Key words: Antioxidant genes, Morpho-biochemical, Rice, Salinity

INTRODUCTION

Rice cultivar ‘IR64’ is one of the rice cultivars widely grown in Indonesia. It was released by IRRI in 1985 and classified as high quality rice. It is a lowland and irrigated rice cultivar. The period of this cultivar to reach maturity is 117 days. The yield reaches 5,965 kg/ha in dry season, while during rainy season the yield is around 3,852 kg/ha (Khash and Virk, 2005).

The productivity of rice is influenced by abiotic stress. Salinity is the second important stress condition that reduced productivity (Shrivastava and Kumar, 2015). The soil is categorized saline when it contains NaCl and soluble compound of other minerals such as Ca, Mg, K, Fe, B, SO4, CO3, and CHO; at high concentration (Szabolcs, 1989). Land salinization can be caused by improper drainage, use of salted irrigation water and climate change (Endo et al., 2011). Salinity stress triggers changes in morphological and biochemical characteristics of plants such as the increase in reactive oxygen species (ROS) production (Xu et al., 2011; Aref and Rad, 2012). The ROS production can be measured by accumulation of malondialdehyde (MDA) as a marker of oxidative stress due to membrane cell damage during salinity of drought stress (Xu et al., 2015).

Salt stress affected various stages of rice growth and development. The damages caused by high salt include the decrease of leaf area, rolled leaf, brown and dry leaf (Munns, 2005). High salt in soil environment causes limited availability of water to be absorbed by plant root. This condition leads to growth reduction, followed by salt accumulation in plant tissue. Salt poisoning induces tissue senescence and reduces growth (Munns, 2005). It was reported that, the agronomic traits that mostly affected by salinity in rice were grain yield and productive tillers per plant (Banumathy et al., 2018).

Plants adapt to salinity stress by several changes in their morphology, biochemical components and genes expression. Genes that have an important role in response to salinity stress are antioxidant genes. Superoxide dismutases (SODs) are genes that regulate antioxidant enzymes to combat oxidative stress. Oxidative stress can be induced by several factors including salinity stress (Wang et al., 2003, Xu et al., 2011). Plants that are tolerant to salt stress express a high level of antioxidant genes and have high antioxidant activities (Wang et al., 2003).

The aims of this study were to analyze growth response of rice cultivar IR64 to salinity stress at seedling stage and to evaluate SOD genes expression under salinity stress. This study provided information on morphological, biochemical and molecular changes in rice in response to various salinity stress levels.

*Corresponding author’s e-mail: made_pharmawati@uad.ac.id
1Biology Department, Faculty of Mathematics and Natural Sciences, Udayana University, Kampus Bukit Jimbaran, Bali, 80361, Indonesia.
2Department of Agricultural Engineering, Faculty of Agricultural Technology, Udayana University, Kampus Bukit Jimbaran, Bali, 80361, Indonesia.
MATERIALS AND METHODS

Plant materials and salinity stress treatments: Seeds of rice cultivar ‘IR64’ were collected from a local farmer in Tabanan Regency, Bali, Indonesia. Seeds were surface sterilized in 10% commercial bleach for 15 min and soaked in water for two days. Seeds were then transferred to rockwool media for germination. One week seedlings were transferred to a hydroponic system containing ¼ x MS medium as a nutrient solution. After one week in a hydroponic system, seedlings were treated with NaCl at the concentration of 4dSm⁻¹, 6dSm⁻¹ and 12dSm⁻¹ in ¼ x MS medium for one week. Each treatment was done in three replicates.

Growth and biochemical observation: Seedlings were harvested on the final day of treatment. Shoot height and weight were measured. Chlorophyll was extracted as described for salt treatments using 80% acetone. Chlorophyll content was assessed using spectrophotometer at 645 nm and 663 nm and total chlorophyll was calculated as follows: Chl a (mg/g) = [12.7 * A663] - (2.66 * A645)] / mL acetone mg⁻¹ leaf, Chl b (mg/g) = [22.2 * A645] - (4.68 * A663)] / mL acetone mg⁻¹ leaf, total Chl (mg/g) = 20.2 (A645) + 8.02 (A663) / mL acetone mg⁻¹ leaf (Arnon, 1949). Data were analyzed using ANOVA.

Malondialdehyde (MDA) was estimated according to Xu et al. (2015) with modifications. As much as 0.25 g shoot were homogenised in 3 mL of 0.1M (w/v) trichloroacetic acid followed by centrifugation at 15,000 rpm for 20 min at 4°C. Supernatant (0.5 mL) was transferred to a test tube and 2 mL of 0.5% thiobarbituric acid in 20% trichloroacetic acid was added. Test tube was heated at 80°C water bath for 30 min and immediately cooled on ice and centrifuged at 15,000 rpm, 4°C for 20 min. The absorbance was measured at 532 nm and 600 nm and 0.5% thiobarbituric acid in 20% trichloroacetic acid was used as blank.

Gene expression: The expression of manganese superoxide dismutase (MnSOD) and cytosolic copper/zinc superoxide dismutase (Cu/ZnSOD) under stress were analysed using semi-quantitative RT-PCR. RNA was extracted from rice shoot using an RNase mini kit (Qiagen) following company instruction. First strand cDNA was synthesized using the Script™ Reverse Transcription System (Promega) using 100 ng of total RNA in 20 μL reaction mixture.

Amplification of MnSOD was done using forward primer 5'GGAGGCCATGTCATCATTCC3' and reverse primer 5'CACAAGGTCCAGAAGTCGAA3' (Kim et al., 2004). The Cu/ZnSOD amplification was conducted using forward primer GAGATTCCAAACGGAGGAGGA and reverse primer TGTTAAGGGGTCAGTTGTA as reverse primer (Kim et al., 2004). As control expression, Actin gene was used with forward primer 5'ATGCTCCCTCC CATGCTAC3' and reverse primer 5'TCTCCTGTGCTC CTTGCT3' (Hong et al., 2007). The PCR reaction consisted of 1× PCR buffer, 0.2 mM dNTP, 2 mM MgCl₂, 1 U Taq polymerase, 1.5 μM of each primer and 1 μL cDNA in 25 μL reactions. The cycles of thermal reaction were 94°C for 3 min followed by 40 × 1 min at 95°C for, 1 min at 36°C (MnSOD), or 50°C (Cu/ZnSOD) or 58°C (Actin). Final extension was done 1× at 72°C for 10 min.

PCR products were analyzed using 1.5% agarose gel electrophoresis in TAE buffer and stained with ethidium bromide. The electrophoresis was done for 45 min using 100V and the gel was visualized using UV-transillumination. Quantitative analysis of PCR products was conducted using Image J software (Schneider et al., 2012).

RESULTS AND DISCUSSION

Salinity stress caused reduction of rice ‘IR64’ growth. Salt stress significantly reduced shoot height and weight (Table 1). The highest salt concentration tested (12dSm⁻¹) had the highest reduction in shoot length and weight. Seedling leaf turned yellow under salinity treatments. Yellow leaves became dominant at higher salt concentration. Fig 1 shows changes in leaf colour of rice ‘IR64’ seedlings as affected by salt stress. Chlorophyll content (Chl a, b and total chlorophyll) deceased in NaCl treated seedlings. Table 2 shows chlorophyll content in control seedlings and in salt treated seedlings. The ratio of chlorophyll a/b decreased at salt concentration of 12dSm⁻¹, but the ratio was not affected at lower salt concentration.

Salinity affected seedlings growth of rice ‘IR64’. The reduction of growth under salt stress could be due to reduction in photosynthesis which reduces carbohydrate supply for plant growth (Dhanyalakshmi et al., 2013). High concentration of NaCl induces ion toxicity which affected

Table 1: Shoot length and seedling weight of rice ‘IR64’ under salinity stress

<table>
<thead>
<tr>
<th>Salinity Level</th>
<th>Shoot Length (cm)</th>
<th>Shoot Weight (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>24.85</td>
<td>0.162</td>
</tr>
<tr>
<td>4dSm⁻¹</td>
<td>24.17</td>
<td>0.146</td>
</tr>
<tr>
<td>6dSm⁻¹</td>
<td>23.30</td>
<td>0.132</td>
</tr>
<tr>
<td>12dSm⁻¹</td>
<td>21.40</td>
<td>0.104</td>
</tr>
</tbody>
</table>

Numbers are means from three replicates. Same letters following means in the same column are not significantly different at P=0.05.

Table 2: Chlorophyll content in rice ‘IR64’ under salinity stress

<table>
<thead>
<tr>
<th>Salinity Level</th>
<th>Chl a (mg/g)</th>
<th>Chl b (mg/g)</th>
<th>Total Chl (mg/g)</th>
<th>Chl a/b ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>1.425</td>
<td>0.396</td>
<td>17.937a</td>
<td>4.0479</td>
</tr>
<tr>
<td>4dSm⁻¹</td>
<td>1.139b</td>
<td>0.381b</td>
<td>15.525b</td>
<td>3.279b</td>
</tr>
<tr>
<td>6dSm⁻¹</td>
<td>1.063b</td>
<td>0.391b</td>
<td>15.139b</td>
<td>2.7969</td>
</tr>
<tr>
<td>12dSm⁻¹</td>
<td>0.536c</td>
<td>0.299d</td>
<td>9.536c</td>
<td>1.786c</td>
</tr>
</tbody>
</table>

Chl a/chlorophyll. Numbers are means from three replicates. Means followed by the same letters in the same column are not significantly different at P=0.05.
Table 3: MDA content in shoot of rice 'IR64' under salt stress.

<table>
<thead>
<tr>
<th>Salinity Level</th>
<th>MDA Content (μmol/g FW)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>30.66*</td>
</tr>
<tr>
<td>4dSm⁻¹</td>
<td>41.28*</td>
</tr>
<tr>
<td>6dSm⁻¹</td>
<td>43.23*</td>
</tr>
<tr>
<td>12dSm⁻¹</td>
<td>63.12*</td>
</tr>
</tbody>
</table>

Numbers are means from three replicates. Means followed by the same letters in the same column are not significantly different at P=0.05.

In saline conditions, high salt leads to membrane disorganization and modification of metabolites activation of cell wall. As a result, deposition of materials occurs and leads to the elasticity of cell wall and disrupts cell expansion (Ali et al., 2004). High salt changes the activity of enzymes and causes premature senescence (Reddy et al., 2017) leading to growth reduction.

Photosynthesis depends on chlorophyll content of leaf, therefore, low chlorophyll content leads to a reduction of photosynthesis (Amirjani, 2011). Chlorophyll content affected by NaCl is inversely proportional to concentration of sodium, therefore chlorophyll content can be used as index of salt tolerance (Lutts et al., 1996). Salt tolerant rice has higher chlorophyll content than salt sensitive rice (Lutts et al., 1996). In this study, higher concentration of NaCl (12dSm⁻¹) decreased the ratio of chlorophyll a/b. The ratio of chlorophyll a/b has been used as an indicator of salinity tolerance (Kura-Hotta et al., 1987). High chlorophyll a/b was observed in salinity tolerant rice (Zhang et al., 2012). The decrease of chlorophyll a/b ratio was also reported in other rice cultivars (IR4630 and IR31785) under salinity stress condition (Tatar et al., 2010).

Malondialdehyde (MDA) is an indicator of oxidative stress. As can be seen in Table 3, the concentrations of MDA increased in shoot of seedlings treated with salt. Higher salt concentration induced higher level of oxidative stress as indicated by high MDA content. According to Niyalusakshmi et al. (2013), low MDA levels contributed for salt tolerance in rice.

In this study, it was found that the expression of antioxidant gene MnSOD1 and Cu/ZnSOD1 in rice 'IR64' increased under salt stress (Fig 2a and b). Fig 2c shows control gene expression using Actin where there were no changes in Actin gene expression under salt stress. Fig 2d is a quantitative expression of MnSOD1 and Cu/ZnSOD1 as estimated using Image J software and expressed as relative intensity of RNA level.

Salt stress induces accumulation of reactive oxygen species (Xu et al., 2011). Certain genes will be induced if plant undergoes salinity stress, therefore plant can increase tolerance to salt stress. Manganese superoxide dismutase gene (MnSOD) and cytosolic copper/zinc superoxide dismutase (cCu/ZnSOD) are two genes among various antioxidant genes responded to abiotic stress. It has been demonstrated that MnSOD1 can be used as a candidate for improving salt tolerant in plants (Gill and Tuteja, 2010). Three variants of MnSOD1 were reported, one of them is MnSOD1 (Tanaka et al., 1999).

The expression of MnSOD1 and Cu/ZnSOD1 in 'IR64' seedling increased after salt treatment. The increase of expression of these two genes under salinity stress has also been reported in local rice of Indonesia, 'Cempo Ireng' seedling (Reffi and Purwastuti, 2016).

The expression of MnSOD1 increased highly at 4dSm⁻¹ salt stress, and moderately increased at 6dSm⁻¹, while the highest expression of Cu/ZnSOD1 was at 6dSm⁻¹. At severe salt stress, both genes had only slight increase in its expression as compared to control. This may indicate that at an extreme concentration of salt, there is only little oxidative defence. Transgenic plants over expressed SOD gene have an increase in their resistance to abiotic stress (Back and Skinner, 2010).

![Image of rice seedlings](image)

Fig 1: Seedlings of rice IR64 after seven days treatment with NaCl. Levels of NaCl tested, left to right: NaCl 0dSm⁻¹, 6dSm⁻¹ and 12dSm⁻¹. White bar=4 cm.
CONCLUSION
Salinity induced the decrease of growth characteristics in rice 'IR64' seedling. The decrease included shoot length and weight and chlorophyll content. High salinity induced oxidative stress showed by high levels of MDA in shoot of salt treated seedlings. There were changes in antioxidant gene expression under salt stress, generally the expression of antioxidant genes increased as a response to salinity.

ACKNOWLEDGEMENT
This study was funded by Ministry of Research, Technology and Higher Education Republic of Indonesia. The authors thank I Wayan Tika for providing rice seeds.

REFERENCES

www.physiology.org

<table>
<thead>
<tr>
<th></th>
<th>Title</th>
<th>Author(s)</th>
<th>Publication Details</th>
<th>Source</th>
<th>Similarity</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Expression of the AKT1-type K+ channel gene from Puccinellia tenuiflora, PutAKT1, enhances salt tolerance in Arabidopsis,</td>
<td>Sintho Wahyuning Ardie, Shenkui Liu, Tetsuo Takano</td>
<td>Plant Cell Reports, 2010</td>
<td>hdl.handle.net</td>
<td><1%</td>
</tr>
<tr>
<td>6</td>
<td>Submitted to Kyungpook National University</td>
<td>Binay Patel, Masashi Watanabe</td>
<td>Microscopy and Microanalysis, 2014</td>
<td>pscipub.com</td>
<td><1%</td>
</tr>
<tr>
<td>7</td>
<td>Submitted to University of Stellenbosch, South Africa</td>
<td>Submitted to Istanbul Kultur University</td>
<td></td>
<td>d-nb.info</td>
<td><1%</td>
</tr>
<tr>
<td>#</td>
<td>Reference</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>-----------</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>hal.archives-ouvertes.fr
Internet Source</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>aglifesciences.tamu.edu
Internet Source</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>Hanqing Feng, Yifeng Wang, Hongyu Li, Rongfang Wang, Kun Sun, Lingyun Jia. "Salt stress-induced expression of rice AOX1a is mediated through an accumulation of hydrogen peroxide", Biologia, 2010</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| 18 | Supaporn Hasthanasombut, Kanyarat Supaibulwatana, Masahiro Mii, Ikuo Nakamura. "Genetic manipulation of Japonica rice using the OsBADH1 gene from Indica rice to improve

Submitted to Jawaharlal Nehru University (JNU)

krishikosh.egranth.ac.in

Submitted to Higher Education Commission Pakistan
<table>
<thead>
<tr>
<th>No.</th>
<th>Reference</th>
<th>Type</th>
<th>URL</th>
<th>Source Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td>Submitted to Clemson University A. Rodríguez-Delfín, A. Posadas, C. León-Velarde, V. Mares, R. Quiroz. "EFFECT OF SALT AND WATER STRESS ON THE PROLINE AND TOTAL CHLOROPHYLL CONTENT AND NUTRIENTS UPTAKE ON TWO SWEET POTATO CULTIVARS GROWN ON SOILLESS CULTURE", Acta Horticulturae, 2012</td>
<td>Student Paper</td>
<td>dare.ubvu.vu.nl</td>
<td><1%</td>
</tr>
<tr>
<td>26</td>
<td>A. Rodríguez-Delfín, A. Posadas, C. León-Velarde, V. Mares, R. Quiroz. "EFFECT OF SALT AND WATER STRESS ON THE PROLINE AND TOTAL CHLOROPHYLL CONTENT AND NUTRIENTS UPTAKE ON TWO SWEET POTATO CULTIVARS GROWN ON SOILLESS CULTURE", Acta Horticulturae, 2012</td>
<td>Student Paper</td>
<td>dare.ubvu.vu.nl</td>
<td><1%</td>
</tr>
<tr>
<td>27</td>
<td>dare.ubvu.vu.nl</td>
<td>Internet Source</td>
<td>dare.ubvu.vu.nl</td>
<td><1%</td>
</tr>
<tr>
<td>28</td>
<td>academicjournals.org</td>
<td>Internet Source</td>
<td>academicjournals.org</td>
<td><1%</td>
</tr>
<tr>
<td>29</td>
<td>Chen, L.R.. "MeJA-induced transcriptional changes in adventitious roots of Bupleurum kaoi", Plant Science, 200707</td>
<td>Publication</td>
<td>academicjournals.org</td>
<td><1%</td>
</tr>
<tr>
<td>30</td>
<td>Environmental Chemistry, 2005.</td>
<td>Publication</td>
<td>www.pakbs.org</td>
<td><1%</td>
</tr>
<tr>
<td>31</td>
<td>Submitted to University of Pretoria</td>
<td>Student Paper</td>
<td>www.pakbs.org</td>
<td><1%</td>
</tr>
<tr>
<td>32</td>
<td>www.pakbs.org</td>
<td>Internet Source</td>
<td>www.pakbs.org</td>
<td><1%</td>
</tr>
</tbody>
</table>

Michèle L Largeteau, Gerardo Mata, Jean-Michel Savoie. "Verticillium fungicola var. fungicola affects Agaricus bisporus cultivation in Mexico", FEMS Microbiology Letters, 2004

"Salt Stress, Microbes, and Plant Interactions: Causes and Solution", Springer Science and Business Media LLC, 2019

Submitted to University of the Pacific

Submitted to University of Southampton