Subak Land Information System Based On Remote Sensing And Geographic Information System In Denpasar City

Indayati Lanyaa, N. Netera Subadiyasaa, Jeremia Hutauruka

a Study Program Agroecotechnology, Faculty of Agricultural, Udayana University, Indonesia, e-mail: indahnet@yahoo.co.id

Abstract: Subak in this paper is a unit of agricultural area, with names, have palemahan (paddy field resource), pawongan (human resources / farmers), and paddy field farming systems. Subak as local genius Bali, constructed since the 7th century, until now Subak system still exist in Denpasar. UNESCO, in 2011, the establishment of Subak as a world cultural heritage. Ironically, not one district/city, and the Province of Bali has maps spatially Subak, only statistical data. The era of technology and communications of development, requires the ease and speed of getting the data and the latest information with a high degree of spatial accuracy. The answer requires of data base information based on information and communication technology (ICT). Worldview satellite imagery coverage of Denpasar in 2015, and ArcGIS 10.3 software used for mapping land and extensive rice fields of Subak (spatial data). Secondary data consists of land resources (LR), the primary data includes the name pekaseh delineation and area subak, human resources (HR) and agricultural activities are used as attribute data. Denpasar City has 41 Subak in 2015, area Subak on the analysis of satellite imagery (2008.6 ha) is smaller (520.4 ha) of the Central Statistics Agency (CSA, Denpasar 2529 ha), with r^2 = 0.8967. Soil fertility moderate, land suitability agroekosistem very suitable (S1) for rice field and suitable (S2) for sekon crops and horticulture lowlands, required land cultivation and fertilization, suitable to crop needs. HR status of farmers as cultivators 72% and Landowners 28%. Subak paddy crop rotation pattern Denpasar City is paddy-paddy/palawija-paddy. The data base is composed of a map Subak Subak (spatial data), the data LR, HR and agricultural activities (attributes data).

Copyright © 2016 Author(s).

Keywords: the Subak, spatial data, Land resources, human resources.

How to cite (APA 6th Style):

doi: 10.14710/geoproceed.v.pp-pp
1. INTRODUCTION

Planning, implementation, and evaluation of regional development in all fields require data and the most recent update, correct, and accurately, to suit the purpose and on target. The available data is generally a correlation table between multiple names with the component area of Land resources (LR), human resources (HR) and development activities are ongoing. In this era of technology and communications would require the unit area based geospatial development, supplemented by data and basic information resource potential of the area.

Similarly, for the development of Agriculture requires a data base, in the form of spatial data (units of land development) and attribute data that consists of data of LR, farmers HR and farming activities are carried out in every area of development. Results of research Lanya, et al (2014), produced maps of land zoning Subak (protected, buffer and can be converted), using high resolution satellite imagery (Ikonos, Quick bread, Worldview, Landsat 8 and software GIS (Arc GIS), high accuracy (98.5%), and can be obtained exact geographical location resulting from the analysis of satellite imagery. Further commented that the submission of information resource potential of agriculture based on remote sensing and GIS facilitate in establishing zoning Subak of rice field protection area of agricultural land in sustainable food.

Embryo of permanent agriculture in Bali is done by the Subak system; Bench terraces on sloping land on the volcanic landform, water resources derived from springs and orographic precipitation. Limited sources of water for agriculture of rice field, carried out through the equitable distribution of water, use water efficiently and planned. Traditional water management systems are known to farming Subak systems. According to various sources, water control system built at the initiation of settled agriculture, is no longer moving, there is also mention the Subak was built in the 7th century. In the Regional Regulation (Perda Bali Province No.02 / PD / DPRD /1972) Subak defined as traditional law community that have the characteristics of socio-agrarian-religious, a farmer association that manages the irrigation water in paddy fields. Ironically, prior to 2015 there has been no study spatial limits Subak region. Subak Institutions in Bali receive incentives from the provincial and regency / municipality, with goal to preserve the natural and agrarian culture. Subak is perfect to implement the philosophy of Tri Hita Karana, there pawongan (Subak members/farmers), there palemahan (paddy field), and there Parahyangan (Pura). Subak in this paper is a unit of agricultural area, with names, have palemahan (paddy field resource), pawongan (human resources / farmers), and paddy field farming systems. For it does not discuss of Subak as water traditional setting organizations (of Subak irrigation system).

Tri Hita Karana (human, natural/environmental and parahyangan) is the philosophy of the Balinese people, who always keep the balance of the relationship between society and nature, society and God. Symbolized by the parahyangan (Pura Subak) a place of prayer, palemahan (paddy field), and members of Subak (Pawongan). Religious values, limited water resources, intelligently disolusikan memallui management of irrigation systems and irrigation agencies are designated as socio-religious character of the main function is the management of irrigation water. for the production of food crops, particularly rice and pulses (Windia, 2006). The existence of Subak as traditional institutions / organizations of indigenous Bali in agriculture is still exis. Subak as Bali local genius established by the United Nations Organization (UNESCO, 2011) as world cultural heritage. Subak system still exist in Denpasar, on the Denpasar entry into the World Cultural Heritage City.

Subak in Denpasar has an important role, both as a counterbalance the urban ecosystem, as well as primary agricultural resources in the success of development food security programs. Along with the information disclosure and communication, as well as the preservation of the Subak in Bali, GIS software can then be used as a medium represents a data and information on Subak into a computerized system.
Mapping rice area by means of satellite imagery and GIS have been conducted throughout Indonesia (Directorate General of infrastructure and Facilities Agriculture, Ministry of Agriculture, 2012). The result is a map of paddy fields in Bali Province 985 ha smaller than the CSA, Bali in the same year. While the results of the mapping paddy fields by using technology, region, and that same year conducted by the National Land Agency, Data obtained by the difference paddy fields area with the data of the CSA only 113 ha. Similar research applications of remote sensing and GIS (Geographic Information System) for mapping rice fields in Bali has a 98.5% accuracy rate (Lanya, et al., 2014). The third that research used to calculate the area of paddy fields in Bali province associated with the balance of food. Map (spatial data) are not yet equipped with data and information on land resources (LR) and human resources (HR) as well as the agricultural activities of each unit map (polygon paddy fields management unit) as a data base (attributes) that are needed for agricultural development. For the land resource information system, GIS-based need to be built to integrate spatial data and attribute data of agricultural resources (LR, HR)), in order to facilitate the search for data and information easily and quickly.

In this era of globalization, the development of agriculture require a data base management unit of land, such as Subak in Bali region. Data base of spatial (map of Subak) need to be integrated with attribute data Subak resources through information and communication technology (ICT). Subak as agricultural land resources should be preserved and recorded computer-based potential to provide added value to the data base of Subak. Data base of paddy fields of Subak is data and land information that controls plant growth. In outline, the data include: soil, water, farmers, and agricultural activity. It is used to facilitate in implementation of smart people, smart environment, and smart agrarian economy. Subak region need to be mapped spatially and supplemented by data paddy fields resources (LR, HR, as well as farming systems conducted by farmers) in the region by means of remote sensing and GIS, to get high accuracy and easily accessible.

Land Resources Information System (LRIS) is one form of geographic information systems, where the data of agricultural land resources is a kind of sub-component data and geographic information. LRIS components and works the same way with com-component and how GIS is public unless the object to be examined are data and information on agricultural land resources (Sulaiman, et al., 2015). Similarly LRIS as agricultural land resources based computers, used for data provision, manage, process, storage and security, product manufacturing information relating to the LR and HR Subak paddy fields, as well as generate geographic referenced information.

2. DATA AND METHODS

2.1. Geographical area of Denpasar City

Denpasar city is at 08035’31" - 08044’49" south latitude and between 115010’23" - 115016’27" east longitude. Bordering Badung Regency in North and West, Gianyar and Badung Strait to the east, total area 127.78 km². Denpasar city is composed of four sub-districts (North, East, South, and West), 43 Village / urban village with 404 banjar / hamlets (Figure 1).
Data from the Central Statistics Agency (CSA, 2014), Denpasar City has 42 of Subak, scattered in four districts, West Denpasar eight of Subak, Denpasar East 14 of Subak, Denpasar Selatan 10 of Subak, and North Denpasar 10 of Subak.

2.2. Materials and research tool
The research material consists of: Satellite Imagery Worldview (WV) Denpasar 2015, maps support as secondary data (maps appearance of the earth and soil types), land suitability agro-ecosystem, soil fertility, statistical data CBS and data from the Department of Agriculture Denpasar year 2014. Software Quantum GIS (QGIS) is used for: 1) mapping of boundary and rice area of Subak (spatial data) from the analysis of satellite imagery and field survey, (2) integrating the spatial data with the data of land resources (LR) consists of soil, water, vegetation, human resources (HR) and agricultural activities, and (3) presenting the spatial and attribute data in Subak land resources information system based on GIS.

2.3. Research methods
The research method used: (1) literature through secondary data collection, (2) the analysis of satellite imagery WV 2015, through a digitization polygon paddy field on the screen to get a subak tentative map, (3) The field survey to obtain information boundaries of Subak, HR primary data, and agricultural activities, (4) create a land use map of Subak paddy field and non-agricultural land, (5) develop a data base of spatial and attribute data, (6) establish land information system of Subak. Point 2.4, 5 and 6 using a QGIS software. Beginning with the equation of the reference coordinate system using WGS 84 s/UTM Grid, create a polygon vector data (shp) with features add layers, Satellite Imagery Wordview 2015 Visual Interpretation and digitized on screen polygon layer of area Subak. Use calculate fitur in QuantumGis to calculate the area of the subak area, join attribute and spasial data of Subak in QuantumGis, make a layout map to add features composer, minimap menu is used to create edge of information maps.

3. RESULTS AND DISCUSSION
Delimitation and delineation of boundaries of Subak through a digitization screen on satellite imagery WV (tentative map), equipped with field measurements and observations, as well as interviews with the chairman/Kelian Subak, a produce of Subak map (Figure 2). Figure 2 shows that the Denpasar city still has 41 Subak area of 2008.6 ha, smaller (520.4 ha) of data from Denpasar CBS (2529 ha), with the regression equation $y = 0.7677x + 1.5887$ with $R^2 = 0.8967$. The value of $R^2 = 0.8967$ means that there is a very real correlation between the area of Subak from the analysis of satellite imagery with data from CBS with 89.67% confidence level. Geographic locations spread across four districts. The smallest area (1.25 ha) Srogsogan Subak in West Denpasar and largest (152 ha) in Subak Temaga, East Denpasar District.

Differences of Subak paddy field from different sources are common, because it uses a different method. As was the CSA in the study area (Denpasar), find a number of Subak mapping results by means of satellite imagery and GIS, which have been checking field, acquiring data 41 of Subak. Subak difference Peraupan East with an area of 15 ha is still listed in the statistical data. Subak existing condition in the field does not have paddy field since 1998 (the interview with Pekaseh). By the word Subak paddy field mapping of using a remote sensing and GIS technology will obtain data and information more quickly, accurately, current/recent and its existence could be traced geographically/spatially, the data and information more quickly and accurately obtained, when compared with the conventional data from this terrestrial survey.

Research Hutauruk, et al (2016) on Land resources information system (LRIS) of Subak paddy fields based remote sensing and GIS in Denpasar able to provide information on potential LR, HR, agricultural activity in the 41 polygon of area Subak, quickly and easily identified and accessed. The same study in Badung produce 119...
polygons of area Subak (Subadiyasa, et al., 2016). These results assist local governments in planning, implementation of agricultural development in the city of Denpasar City and Badung Regency.

CSA data and of the Department of Agriculture are generally larger than the data results of mapping of by means of remote sensing and GIS technologies (Lanya, et al., 2014). The subak paddy field area data as a baseline in agricultural development planning that focuses on food security. The subak paddy field area affects the calculation of food availability in the region of Bali. Information standard acreage of agricultural land a greater than the real conditions will impact negatively on the self-sufficiency in rice. To get standard extensive data of high-quality paddy fields, the subak paddy field mapping of is required based remote sensing and GIS as spatial data and the need to put in regulations related to the protection of agricultural land and the national and regional food security.

The interpretation of satellite imagery and field observations found in many buildings in the the Subak paddy field, and in the area of green open space (GOS), such as building houses, roads and housing conducted by the developer (Figure 3). The tendency of such violations The subak extends throughout the region, especially in South Denpasar bordering the tourism center of Kuta and Sanur. Paddy fields in the South Denpasar are very vulnerable to sense of urgency space for urban development and tourism support facilities. This is caused by the allocation of space in the Spatial Plan (SP) Denpasar City years 2011-2031, ie paddy field allocated to non-agricultural land.

Figure 3. Satellite Image QuickBird Denpasar City 2013 (Bappeda, Kota Denpasar)

Information potential of NR, HR, and farming systems in the Subak paddy fields can be presented in table form (Table 1) and a map based on GIS (Figure 4). Map The subak (Figure 2) from the digitized satellite imagery as a spatial database, integrated with Table 1 (examples Subak Kerdung) as a data attribute, using GIS technology to produce Figure 4.

Subak resource consists of land resource (subak area, munduk, plant type, water source, land suitability, soil type, soil drainase, soil texture, fer-ability, fertilizer status), human resource (pekaseh name, farmer total, farmer status, member total, land owner) and agricultural activities (crop index, fertilizer types, fertilizer dos, production, irrigation type, crop type, seed source, pest and marketing).
The era of globalization, it will select information from Figure 4, because it is easily accessible, more communicative and based on information and communication technology (ICT). To find the desired information The subak potential, with the help of program GIS, fairly choose / click Subak spatial data locations are on the system, will perform a number of information NR, HR and agricultural activities that have been have developed as Subak selected attribute data.

Table 1. Data base of SDL, SDM and agricultural activities in Subak Kerdung in South Denpasar

<table>
<thead>
<tr>
<th>Subak Name</th>
<th>Village</th>
<th>Subak Area From Pekaseh</th>
<th>Subak Area From CSA</th>
<th>Munduk</th>
<th>Plant Type</th>
<th>Water Source</th>
<th>Land Suitability</th>
<th>Soil Type</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Soil Drinase</th>
<th>Soil Texture</th>
<th>Fert. Ability</th>
<th>Fertilizer Status</th>
<th>Pekaseh Name</th>
<th>Farmer Total</th>
<th>Farmer Status</th>
<th>Member Total</th>
<th>Land Owner</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
<td>15</td>
<td>16</td>
<td>17</td>
<td>18</td>
<td>19</td>
</tr>
</tbody>
</table>

Hampered, rather HamperedTerhambat-agak terhambat Smooth-Rather Smooth CCgh-LLgh Medium I Wayan Tama 200 Owner = 20, Cultivator = 180 200 Personal = 215 ha

Table 1 (Advanced)

<table>
<thead>
<tr>
<th>Crop Index</th>
<th>Fertilizer Type</th>
<th>Fertilizer Dos</th>
<th>Production</th>
<th>Irrigation Type</th>
<th>Crop Type</th>
<th>Seed Source</th>
<th>Pest</th>
<th>Marketing</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>21</td>
<td>22</td>
<td>23</td>
<td>24</td>
<td>25</td>
<td>26</td>
<td>27</td>
<td>28</td>
</tr>
</tbody>
</table>

doi: 10.14710/geoproceed.v.pp-pp
<table>
<thead>
<tr>
<th>Subak Name</th>
<th>Village</th>
<th>Subak Area From Pekaseh</th>
<th>Subak Area From CSA</th>
<th>Munduk</th>
<th>Plant Type</th>
<th>Water Source</th>
<th>Land Suitability</th>
<th>Soil Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Urea, NPK Phonska</td>
<td>Urea 200 kg/ha, NPK Phonska 200 Kg/ha</td>
<td>Paddy in dry season = 10 ton/ha, paddy in wet season = 8.5 ton, soy 2 ton/ha, Sekunder, Tersier</td>
<td>Paddy and Vegetable Seed From PT.PertaniBenih</td>
<td>wereng, Snail, bird, rat</td>
<td>Paddy sale to PT.Pertani, PT UPB Munggu, and Middleman</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 4. Display application of Subak paddy field Information System. Example Subak Kerdung (analysis, 2016)

Generally NR Denpasar City classified as good: moderate soil fertility, are suitable (S1) for paddy rice irrigated and suitable for horticultural crops and lowland. Input is needed is the cultivation HR in general (72%) as peasants, landowners and only 28%. Crop rotation pattern in North Denpasar is paddy--paddy-grains, East Denpasar is paddy--paddy-grains, South Denpasar is paddy--paddy-crops, and West Denpasar is paddy--paddy crops / horticulture. of land, irrigation, and fertilization in accordance with the needs of the plant to increase production of food crops.
The results provide information to the farming community that Denpasar already have paddy field information system Subak-based remote sensing and GIS technology. This system can aid in the development of technology-based, with the aim to provide solutions to various problems to enhance community welfare. As planning (e-planning), implementation (e-governance), monitoring and evaluation (e-Money) agricultural development, as well as easy to give information on potential land resources, human resources, and agricultural activities in each Subak to Denpasar smart City in managing the natural, cultural, and environmental.

Resources Subak displayed using GIS more easily and accurately, compared to the provision and performance statistics. GIS can integrate data attribute / of Subak resource database with spatial data / geographical position of the region of Subak, also makes it easy to calculate the area of raw paddy fields in the region of Subak. The data of land resources, human resources and agricultural activities in the region of Subak can be displayed and updated easily. During this time the data separate agricultural land resources and the only form of statistical data, so it is very difficult to obtain information on the resource potential of Subak easily, quickly and accurately. Research and Development of Land Resources (RDLR) develop Land Resources Information System, which is abbreviated SISULTAN in 2013, and develop in 2014 and can be accessed via www.sisultan.litbang.pertanian.go.id. Geospatial data presented in this system only (i) the rainy region, which presents the class of rainfall and its distribution. This data bersumberkan of climate resource map scale of 1: 1,000,000 published by the Research Institute for Agro-climate and Hydrology in 2000; and (i) spatial structure of agriculture (Sulaiman, et al., 2015).

4. CONCLUSION

Delineation polygon of Subak paddy fields on the image of the Wordview 2015 and field surveys in Denpasar amounted to 41 Subak of Subak 42 CSA data. Remote sensing technology can provide spatial data more accurate than the CSA data.

Data base of Subak paddy fields, covering land resources (subak area, munduk, plant type, water source, land suitability, soil type, soil drainase, soil texture, fert-ability, fertilizer status), human resource (pekaseh name, farmer total, farmer status, member total, land owner) and agricultural activities (crop index, fertilizer types, fertilizer dos, production, irrigation type, crop type, seed source, pest and marketing), can be integrated with a map of Subak, and can be called up easily and quickly to acquire a data base of agriculture in each name of Subak computer-based GIS software.

Land resources information system (LRIS) of Subak paddy fields, can be used as a tool for local governments in formulating policies, take decisions or carry out activities related to agricultural development based on local wisdom.

5. ACKNOWLEDGMENTS

We extend our thanks to Mr. Minister RistekDikti, especially Mr. Director of Research and Community Services Directorate General for Strengthening Research and Development of the Ministry of Research Technology and Higher Education, which has given the cost of this study on the National Priorities Research SKIM, Masterplan for the Acceleration and expansion of Indonesia’s Economic Development (MP3EI
Thanks To the Rector of Udayana University, which has provided the opportunity in the conduct of research and support in this publication. Similarly to Mr. Chairman Institute for Research and Community Services and to Mr. Dean of the Faculty of Agriculture, University of Udayana we say thank you, which provide the opportunity for the research. We thank the Research Executive Team and those who influence helped this research.

6. REFERENCES

