Contents

1 Active Closed-Loop Gap Control for Aerostatic Bearing 1
 Jyh-Chyang Renn and Yaw-Ming Chiou

2 Firefly Algorithm for Power Economic Emission Dispatch 9
 Chao-Lung Chiang

3 Application of the Taguchi Method to the Warpage
 for Light Guide Plate 17
 Po-Jen Cheng and Chin-Hsing Cheng

4 Diagnosis of Muscle Properties in Low-Back-Pain
 with Electrical Bioimpedance Methodology 25
 Chin-Sung Hsiao, Yung-Tsung Yang, and Tai-Shin Ching

5 Low-Cost Wearable Control Valves with No Mechanical
 Sliding Parts in Valves 35
 Tetsuya Akagi, Shujiro Dohta, Ayumu Ono, and Abdul Nasir

6 Estimation of Residual Traveling Distance for Power
 Wheelchair Using Neural Network 43
 Pei-Chung Chen, Xiao-Qin Li, and Yong-Fa Koh

7 Residual Whitening Method for Identification of Induction
 Motor System .. 51
 Chien-Hsun Kuo and D.-M. Yang

8 Analysis and Simulation of Small-Sized Quasi-servo
 Valve Using Tiny On/Off Control Valve 59
 So Shimooka, Shujiro Dohta, Tetsuya Akagi, and Yoshinori Moriwake

9 Analysis of Flexible Thin Actuator Using Gas–Liquid
 Phase-Change of Low Boiling Point Liquid 67
 Yasuyuki Tsuji, Shujiro Dohta, Tetsuya Akagi, and Yuto Fujiwara
10 Development of Flexible Pneumatic Cylinder with String-Type Displacement Sensor for Flexible Spherical Actuator
Yasuko Matsui, Tetsuya Akagi, Shujiro Dohta, and Shinsaku Fujimoto

11 Evaluation of Computing Reliability in Internet Computing
Shin-Guang Chen

12 An Effective Method for Classification of White Rice Grains Using Various Image Processing Techniques
Suchart Yammen and Chokcharat Rityen

13 Applying ZigBee Wireless Sensors and Photovoltaic System to Plant Factory
Shun-Peng Hsu, Yi-Nung Chung, Chih-Chung Yu, and Young-Chi Hsu

14 Applying Particle Filter Technology to Object Tracking
Tun-Chang Lu, Shun-Peng Hsu, Yu-Xian Huang, Yi-Nung Chung, and Shi-Ming Chen

15 Measurement of Thickness and Refractive Index of Optical Samples in FD-OCT with Two Orthogonal Polarized Lights
Ya-Fen Chang, Yu-An Chen, and Hsu-Chih Cheng

16 Fabrication of a Peristaltic Micropump with UV Curable Adhesive
Yi-Chu Hsu, Jeffrey Levin, and Hsiao-Wei Lee

17 Detecting Object Edges by Xtion Pro and Open Sources
Cheng-Tiao Hsieh

18 Temperature Control of a Baking System for an Ultrahigh-Vacuum Insertion Device
Jui-Che Huang, Yu-Yung Lin, Chin-Kang Yang, Yung-Teng Yu, Cheng-Hasing Chang, and Ching-Shang Hwang

19 Microarray Data Analysis with Support Vector Machine
Si-Hao Du, Jin-Tsong Jeng, Shun-Feng Su, and Sheng-Chieh Chang

20 Feature Selection Algorithm for Motor Quality Types Using Weighted Principal Component Analysis
Yun-Chi Yeh, Liu-Chii Lin, Mei-Chen Liu, and Tsui-Shiun Chu

21 Feasibility Test of Range of Motion Exercises for Ankle Joints Rehabilitation Using Pneumatic Soft Actuators
Hironari Taniguchi, Noriko Tsutsui, and Yoshiaki Takano
22 3D Motion Editing Through B-Spline Fitting with Constraints . . . 167
Mankyu Sung
23 An ARAR-Tree-Based Diagnosis Mechanism for Rule
Anomalies Among Internet Firewalls 175
Chi-Shih Chao
24 Development of Active Orthosis for Lumbago Relief 183
Shinsaku Fujimoto, Tetsuya Akagi, and Feifei Zhao
25 Controller Design by Time-Domain Objective Functions
Using Cuckoo Search . 193
Huey-Yang Horng
26 Behavior Network-Based Risk Recognition Method 201
Jeonghoon Kwak, Suhyun Gong, and Yunsick Sung
27 Reinforcement Learning with Multiple Actions 207
Riku Nishiyama and Satoshi Yamada
28 Wind Turbine Blade Load Alleviation Performance
Employing Individual Pitch Control 215
Chin-Fan Chen, Chi-Jo Wang, Alireza Maheri, and Terrence Macquart
29 Planet Editing Method Using Leap Motions 225
Ji Won Kim, Phil Young Kim, and Yunsick Sung
30 Development of Flexible Haptic Robot Arm Using
Flexible Pneumatic Cylinders with Backdrivability
for Bilateral Control . 231
Takafumi Morimoto, Mohd Aliff, Tetsuya Akagi, and Shujiro Dohta
31 Integration Method of Proxy and Producer–Consumer Patterns . . 239
Jeonghoon Kwak, Jaehak Uam, and Yunsick Sung
32 Bayesian Probability and User Experience-Based Smart
UI Design Method . 245
Junhyuck Son and Yunsick Sung
33 Bayesian Probability-Based Hand Property Control Method . . . 251
Phil Young Kim, Ji Won Kim, and Yunsick Sung
34 Implementation of a Delta-Sigma Analog-to-Digital Converter . . 257
Chin-Fa Hsieh, Tsung-Han Tsai, Chun-Sheng Chen, and Yu-Hao Hsieh
35 An Experimental Investigation of Effect on Engine
Performance by Controlling the Temperature of the Fuel 263
Ming-Hsien Hsueh
<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>36</td>
<td>Modeling of an AlGaAs-Based VCSEL with Bragg Mirrors</td>
</tr>
<tr>
<td></td>
<td>Shu-Hui Liao</td>
</tr>
<tr>
<td>37</td>
<td>Risk Decision Method Based on Sensory Values of Smart Devices</td>
</tr>
<tr>
<td></td>
<td>Taejun Son, Jeonghoon Kwak, Suhyun Gong, and Yunsick Sung</td>
</tr>
<tr>
<td>38</td>
<td>A Flywheel Energy Storage System Suspended by Active Magnetic Bearings with Radial Basis Function Neural Network</td>
</tr>
<tr>
<td></td>
<td>Van-Sum Nguyen, Hong-Van Tran, Lai-Khac Lai, Nguyen Thi-Hoai Nam, Tran Huu-Chau Giang, and Le-Phuong Truong</td>
</tr>
<tr>
<td>39</td>
<td>A Matrix Robot for Block Stacking</td>
</tr>
<tr>
<td></td>
<td>Yu-Ching Su, Ming-Chang Chen, and Wing-Kwong Wong</td>
</tr>
<tr>
<td>40</td>
<td>A Study of Regular Transmission Delay in Bluetooth Communications</td>
</tr>
<tr>
<td></td>
<td>Komang Oka Saputra, Wei-Chung Teng, Pin-Yen Chou, and Tien-Ruey Hsiang</td>
</tr>
<tr>
<td>41</td>
<td>IEEE 802.16j-Based Multihop Relays for Future Performance Enhancement of Aeronautical Mobile Airport Communications Systems (AeroMACS)</td>
</tr>
<tr>
<td></td>
<td>Behnam Kamali</td>
</tr>
<tr>
<td>42</td>
<td>Explore the Influential Factors on Maritime Accidents by Regression Approach</td>
</tr>
<tr>
<td></td>
<td>Chien-Chang Chou, Cheng-Yi Chen, Jeng-Ming Yih, Kur-Eng Chang, and Chung-Ping Wu</td>
</tr>
<tr>
<td>43</td>
<td>Analytical Model of Pipe Inspection Robot Using Flexible Pneumatic Cylinder</td>
</tr>
<tr>
<td></td>
<td>Haojun Qiu, Shujiro Dohta, Tetsuya Akagi, So Shimooka, and Shinsaku Fujimoto</td>
</tr>
<tr>
<td>44</td>
<td>Thermal Resistance Characterization of SiGe-Based HBTs on Thick-Film and Thin-Film SOI</td>
</tr>
<tr>
<td></td>
<td>Shu-Hui Liao</td>
</tr>
<tr>
<td>45</td>
<td>Improved Item Relational Structure Theory Based on Liu’s Item Ordering Consistency Property</td>
</tr>
<tr>
<td></td>
<td>Hsiang-Chuan Liu and Jing-Ming Ju</td>
</tr>
<tr>
<td>46</td>
<td>Enhancement of Digitized Old Film Using Inpainting-Based Method</td>
</tr>
<tr>
<td></td>
<td>Chung-Ming Li and Day-Fann Shen</td>
</tr>
</tbody>
</table>
47 Study of Nickel Catalysts Deposited by Using the Electroless Plating Method and Growth of the Multiwall Carbon Nanotubes
Chih-Yi Lin, Jian-Liang Pan, Chia-Ching Wu, and Wen-Chung Chang
357

48 Photovoltaic Power Generation System Modeling Using an Artificial Neural Network
Cheng-Ting Hsu, Roman Korimara, Lian-Jou Tsai, and Tsun-Jen Cheng
365

49 Thermal Stress Analysis of Layer-wise Functionally Graded Material Beam Considering Neutral Plane
Young-Hoon Lee and Ji-Hwan Kim
373

50 A Smart Home Automation System
Chien-Yuan Liu
381

51 Material Structure Selection of Solution Blue OLEDs Using a Design of Experiment
Yu-Sheng Tsai, Apisit Chittawanij, Lin-Ann Hong, Fuh-Shyang Juang, and Van-Huong Tran
389

52 Development of Software Inspection Tools for Defect Examination in Machine Vision Applications
Jong-Hann Jean
397

53 Design of a Light Guide for Highly Uniform Illumination
Kun-Yi Lee, Chun-Han Chou, Wei-Sung Weng, Wei-Ching Chuang, Wei-Yu Lee, and Allen Jong-Woei Whang
413

54 A Study on the Performance Characteristics of a Synchronous Elastic FIR Filter
Ren-Der Chen and Sheng-Yu Kao
421

55 A Design of Cavity Filters Based on Photonic Crystal Slab Waveguide with Liquid Crystal
Wei-Sung Weng, Hui-Chun Lin, Kun-Yi Lee, Li-Ling Chu, Hsin-Jung Lee, and Wei-Ching Chuang
429

56 A Self-Focus High Precision Scheme Applied to HCPV Solar Center Tracker
Yiing-Yuh Lin and Fu-Mao Jhuang
437

57 Controlling Flock Through Normalized Radial Basis Function Interpolation
Mankyu Sung
445
58 Novel AF Relay Design for Optimizing a MIMO Relay Network Under Backward Non-flat-Fading Channels 453 Chun-Hsien Wu

59 Development of Wearable Power Assist Wear Using Pneumatic Actuators ... 461 Feifei Cho, Xiangpan Li, and Toshiro Noritsugu

60 Cost Model of Physical Activity Monitoring Systems 469 Jen-Liang Cheng, Chien-Chih Chen, and Ling-Hsuan Chen

61 The BCI Control Applied to the Interactive Autonomous Robot with the Function of Meal Assistance 475 Shih-Chung Chen, Chih-Hung Hsu, Hsuan-Chia Kuo, and Ilham A.E. Zaeni

62 Design of a Transparent Pipeline-Based Multiplier 485 Ren-Der Chen and Xiang-Chih Kuo

63 An IP-Based Design to Achieve Power Reduction 493 Chin-Fa Hsieh, Tsung-Han Tsai, and Chih-Hung Lai

64 Crystalline Indium-Doped Zinc Oxide Thin Films Prepared by RF Magnetron Reactive Sputtering 501 Chien-Chen Diao, Chia-Ching Wu, and Cheng-Fu Yang

65 The Construction and Efficiency Validation of an Educational Module of Pneumatics Robotics Arm Controlled by Programmable Logic Controller (PLC) .. 509 Pornpirom Fak-orn, Utjanapol Yomkurd, Natawat Punfong, and Mana Thanaon

66 GPU Computations on Hadoop Clusters for Massive Data Processing ... 515 Wenbo Chen, Shungou Xu, Hai Jiang, Tien-Hsiung Weng, Mario Donato Marino, Yi-Siang Chen, and Kuan-Ching Li

67 A HHT-Based Music Synthesizer 523 I-Hao Hsiao, Chun-Tang Chao, and Chi-Jo Wang

68 Decentralized Robust Estimation of Interconnected Systems with State-Dependent Impulse Disturbances 529 Cheng-Fa Cheng and Shih-Jyun Lin

69 A Lean Analysis to Automate the Draw Operations at a Tube Manufacturing Company 537 Jun-Ing Ker, Chandra Mani Shrestha, and Yichuan Wang
70 Classification of the ECG Signal Using Artificial Neural Network .. 545
Andrew Weems, Mike Harding, and Anthony Choi

71 Integration Method of Composite Pattern for Solving Structure Problems of Visitor Pattern 557
Jaehak Uam, Jeonghoon Kwak, and Yunsick Sung

72 A Circuit Design of Dimming T8 LED Tube for High Power Factor Correction 563
Manh Tran Van, Wei-Sung Weng, Chun-Shan Liu, Shen-Yuar Chen, and Wei-Ching Chuang

73 Anti-ESD Improvement by the Bulk-FOX Structure in HV nLDMOS Devices 571
Shen-Li Chen, Shawn Chang, Yu-Ting Huang, and Shun-Bao Chang

74 N+ Extended-Distribution Influences on Anti-ESD Ability in the 60-V pLDMOS-SCR (NPN-Arranged-Type) 579
Shen-Li Chen, Yu-Ting Huang, Shawn Chang, and Shun-Bao Chang

75 WristEye: An Elderly Computer Learning Assistant System with Wrist-Wearable Devices 587
Wan-Jung Chang, Yi-You Hou, Rung-Shiang Cheng, and Ming-Che Chen

76 A Study of Ultrafast Laser-Based X-Ray Sources for In-Line Phase-Contrast Biomedical Imaging 595
Mario do Nascimento and Jengnan Juang

77 PC-USB-Based Real-Time Control Systems Using Quadratic Optimal Control Method 603
Dershyang Ker

78 A Bibliometric Analysis on Data Mining Using Bradford’s Law .. 613
Jiann-Min Yang, Shu-Feng Tseng, and Yu-Ling Won
Chapter 40
A Study of Regular Transmission Delay in Bluetooth Communications

Komang Oka Saputra, Wei-Chung Teng, Pin-Yen Chou, and Tien-Ruey Hsiang

Abstract This chapter studies a special case of transmission delay when two devices communicate by Bluetooth technology. Transmission delays of packets are usually distributed randomly over some range, or the delay jitter, in wireless or wired communication. However, it is observed that under certain conditions, the transmission delays of consecutive packets may form into parallel dotted lines, and the intervals between a line and its next one are almost the same. The characteristics of the dotted-line delays, like the lifetime of one dotted line, are deduced to help develop an algorithm for detecting the period of this phenomenon. Experiments are further conducted to reveal how factors like operating system, packet sending period, and Bluetooth chips may affect the pattern of regular transmission delays.

Keywords Transmission delay • Bluetooth • Raining

40.1 Introduction

Transmission delays are essential, or at least useful, information to many applications including time synchronization, network traffic analysis, and device fingerprinting [1], to name but a few. Taking device fingerprinting as an example, it may be implemented by measuring the clock skews of the neighboring sensor motes in wireless sensor networks (WSN) [2], the clients device as a cloud service [3], or the other hosts inside the same wireless local area network (WLAN) [4]. A recent research even implemented clock skew-based Bluetooth device identification in personal area network (PAN) [5].

As Bluetooth is one of the most commonly used wireless communication technologies for many years, the communication performance and theoretical delay are studied [6, 7]. However, most of these researches studied Bluetooth’s network behaviors on MAC layer instead of network layer. In the aforementioned
research [5]. Huang et al. also implemented their BlueID technology based on the temporal feature of Bluetooth frequency hopping. This chapter presents a study of smart devices’ time-stamping by transmitting the network layer timestamps to a measurer via Bluetooth communication. Nevertheless, during the experiments, it is found that there exist two types of communication delay patterns. In a normal collection, the offsets (difference between sending time of the smart device and the receiving time of the measurer) distributed randomly over some range, as shown in Fig. 40.1a. Yet in some conditions, the transmission delays of consecutive packets may form into parallel dotted lines, and the intervals between a line and its next one are almost the same (Fig. 40.1b). To the best of our knowledge, this raining phenomenon is not studied before.

To identify the presence of the dotted lines, a mechanism based on the patterns and the slopes of the dotted lines is developed. Furthermore, experiments covering variables of operating systems, server software languages, Bluetooth chips, and packet sending intervals are conducted to discover which combinations would the dotted lines would occur.

40.2 System Setup and Preliminary Results

The experiment system to perform device time-stamping collection is composed by several components:
Client: currently two mobile phones, HTC OneX and Samsung Galaxy Note3, are measured by their built-in Bluetooth chips.

Server: an ASUS K42JP notebook with 4GB RAM is used as server. The built-in AW-BT270 Bluetooth chip and an external BCM20702 Bluetooth chip are used to communicate with clients in the experiments.

Client application: an Android-based application which is developed to get the timestamps of the client device. The application reads the client’s system time, and directly sends it to the server. The sending interval of the timestamps is adjustable from 0.5 s to few seconds.

Server application: an application that records the measurer’s timestamp each time a packet contains the client’s timestamp is received. For offsets like Fig. 40.1a, it is easy to estimate the clock skew of client device by using linear regression [8] or linear programming algorithm (LPA).

40.3 Dotted-Lines Detection Method

The preliminary experiments showed that the slopes of the dotted lines ranging from $-1,850$ to $-1,350$ ppm. Meanwhile, when the dotted line occurs, up to 90% of all offsets belong to the dotted lines. Due to these facts, a detection algorithm is developed as depicted in Fig. 40.2. It details how the detection starts from the first offset, the slope between offsets in the measured target are calculated. When the slope is detected to satisfy the threshold, the measured offset is then counted to be belonging to the dotted line. Otherwise, if the slope is out of range, then the offset is parked in a waiting area for later process. After the whole offsets have been processed, the dotted line is detected to happen if the number of offsets that belong to the dotted line is more that 90% of all offsets.

40.4 Experiment Results

Four controlled variables are selected to study the behavior of the raining phenomenon. The values of these variables include: two types of server operating system, Ubuntu 14.0 (denoted as L) and Windows 7 Ultimate (W); three types of programming language, JAVA (J), C# (C), and Python (P); two types of Bluetooth chip from the onboard AW-BT270 chip (X) and the USB BCM20702 chip (Y); two devices: an HTC OneX (A) and a Samsung Galaxy Note3 (B); and three different clients sending intervals: 0.5, 1, and 2 s.

Table 40.1 summarizes if the dotted lines happen in the result offsets of all combination. As depicted in Table 40.1, the detection algorithm produced results that the dotted lines happen as long as the OS is Windows operating system. The statistic of the detection method is depicted in Table 40.2, which shows the average points in each dotted line for each combination and sending interval. The results
show negative correlation between the number of points and the sending interval, i.e., the bigger the interval, the less the number of points in each line.

To quantify the correctness of the detection method, we calculate the clock skew of all the combinations. As we did not know the real clock skews of the two devices,
Table 40.2 Relation between sending interval and the number of points in one dotted line

<table>
<thead>
<tr>
<th></th>
<th>AWPY</th>
<th>BWPY</th>
<th>AWPZ</th>
<th>BWPZ</th>
<th>AWCY</th>
<th>BWCY</th>
<th>AWCZ</th>
<th>BWCZ</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5 s</td>
<td>17.85</td>
<td>18.51</td>
<td>16.56</td>
<td>18.34</td>
<td>18.50</td>
<td>18.50</td>
<td>19.03</td>
<td>18.20</td>
</tr>
<tr>
<td>1 s</td>
<td>8.94</td>
<td>9.42</td>
<td>8.82</td>
<td>8.02</td>
<td>9.65</td>
<td>9.48</td>
<td>9.52</td>
<td>9.42</td>
</tr>
<tr>
<td>2 s</td>
<td>4.77</td>
<td>4.79</td>
<td>4.69</td>
<td>4.64</td>
<td>4.83</td>
<td>4.75</td>
<td>4.81</td>
<td>4.82</td>
</tr>
</tbody>
</table>

Table 40.3 Clock skew results of all combinations (unit: ppm)

<table>
<thead>
<tr>
<th></th>
<th>Minimum</th>
<th>Maximum</th>
<th>Average</th>
<th>Average − reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>AWCY</td>
<td>−11.84</td>
<td>−8.48</td>
<td>−10.43</td>
<td>0.01</td>
</tr>
<tr>
<td>AWJY</td>
<td>−34.88</td>
<td>−31.14</td>
<td>−33.01</td>
<td>22.57</td>
</tr>
<tr>
<td>AWPY</td>
<td>−10.81</td>
<td>−8.78</td>
<td>−9.95</td>
<td>0.49</td>
</tr>
<tr>
<td>ALJY</td>
<td>−12.04</td>
<td>−9.60</td>
<td>−10.62</td>
<td>0.18</td>
</tr>
<tr>
<td>ALPY</td>
<td>−12.27</td>
<td>−10.31</td>
<td>−11.22</td>
<td>0.78</td>
</tr>
<tr>
<td>AWCZ</td>
<td>28.60</td>
<td>38.23</td>
<td>32.29</td>
<td>42.73</td>
</tr>
<tr>
<td>AWJZ</td>
<td>14.77</td>
<td>17.55</td>
<td>15.85</td>
<td>26.29</td>
</tr>
<tr>
<td>AWPZ</td>
<td>30.02</td>
<td>37.21</td>
<td>32.87</td>
<td>43.31</td>
</tr>
<tr>
<td>ALJZ</td>
<td>−11.96</td>
<td>−9.51</td>
<td>−10.73</td>
<td>0.29</td>
</tr>
<tr>
<td>ALPZ</td>
<td>−13.53</td>
<td>−9.54</td>
<td>−11.53</td>
<td>1.09</td>
</tr>
<tr>
<td>BWCY</td>
<td>12.01</td>
<td>15.35</td>
<td>13.82</td>
<td>0.46</td>
</tr>
<tr>
<td>BWJY</td>
<td>−15.91</td>
<td>−13.03</td>
<td>−14.55</td>
<td>28.83</td>
</tr>
<tr>
<td>BWPY</td>
<td>13.03</td>
<td>14.27</td>
<td>13.78</td>
<td>0.50</td>
</tr>
<tr>
<td>BLJY</td>
<td>12.02</td>
<td>15.97</td>
<td>14.48</td>
<td>0.20</td>
</tr>
<tr>
<td>BLPY</td>
<td>11.24</td>
<td>15.48</td>
<td>13.31</td>
<td>0.97</td>
</tr>
<tr>
<td>BWCZ</td>
<td>27.56</td>
<td>36.68</td>
<td>33.28</td>
<td>19.00</td>
</tr>
<tr>
<td>BWJZ</td>
<td>16.52</td>
<td>19.02</td>
<td>17.88</td>
<td>3.60</td>
</tr>
<tr>
<td>BWPZ</td>
<td>32.34</td>
<td>40.21</td>
<td>37.58</td>
<td>23.30</td>
</tr>
<tr>
<td>BLJZ</td>
<td>11.46</td>
<td>15.05</td>
<td>13.17</td>
<td>1.11</td>
</tr>
<tr>
<td>BLPZ</td>
<td>11.46</td>
<td>15.10</td>
<td>13.68</td>
<td>0.60</td>
</tr>
</tbody>
</table>

we used our previous research [9] which uses WiFi network to calculate the clock skews between the two devices and the server, and use both results as references for the clock skews in Bluetooth network.

As detailed in Table 40.3, all the experiments when using Linux as the server operating system show a relatively close clock skews when compared with the references. These results confirmed the correctness of the detection method’s results in Table 40.1. For the Windows operating system, meanwhile, relatively far results of AWCZ, AWPZ, BWCZ, and BWPZ when compared with the references, confirmed that dotted line occurs in Windows when combined with C# and Python. However, we also discovered results which are inconsistent with the results in Table 40.1. AWJY, AWJZ, and BWJY, are three combinations that should produce a relatively close result to the reference, and BWPY which should produce a relatively far result. Since we use LPA as the estimator, LPA is known to find a slope of all observed data by creating a line that lies below all data (lower bound), there might be other factors
that affect the lower bound of the observed device. For instance, even though AWJY is uncontaminated by the dotted line, the lower bound of AWJY’s data could be not in a stable condition which caused the skew highly fluctuated.

40.5 Conclusions

This chapter verified the device time-stamping through Bluetooth network. A normal timestamp collection was obtained when using Linux as the server operating system combined with Java and Python, and when Windows combined with Java. The normal collection can be directly used to fabricate the clock skew, and the results were confirmed to be acceptable as they are close to clock skew references. For the dotted line, we detected its existence in Windows when combined with C# and Python. The clock skew results are relatively far when compared with the references, which shows the dotted line interferes with the clock skew measurement. We also observed that several clock skews are inconsistent with the results of the detection method, which might be caused by other factors that influence the lower bound of the collected data. As this work is a part of an ongoing research, our further work would include improving the precision of the Bluetooth device time-stamping and also to handle the problem of the lower bound instability.

Acknowledgments This study is partially supported by III Innovative and Prospective Technologies Project of the Institute for Information Industry.

References
