International Research Journal of Engineering, IT & Scientific Research

Published by:
International Journal of College & University
International Research Journal of Engineering, IT and Scientific Research Indexed by:
Chief Patron

Prof. Dr. Surender K Gupta
Associate Professor Head MBA Maharaja Agrasen Institute of Management and Technology

Patron

Prof. Dr. Harinder Singh
Professor, Dept. of Management Amritsar College of Engg. And Tech. (Autonomous/NAAC/NBA) Amritsar.
Dr. G. M. Balamurugan
Principal Vandayar Engineering College, Thanjavur

Chief Advisory

Assoc. Prof. Shamsiah Sahari
Universiti Malaysia Sarawak (UNIMAS) Samarahan, Sarawak, Malaysia

Prof. Dr. Augustina Sackle
Emmanuel Cape Coast College, Ghana

Prof. Dr. Neena Chug
CMK Girls Colleges, Sirsa

Prof. Wimal Hewamanage
School of Philosophy, Wuhan University, China.

Dr. Ikufumi Tomimoto
Japan International Cooperation Agency (JICA), Japan

Dr. Krishna Kumar Bonia
College of Veterinary Science, Assam Agricultural University, Guwahati, India

Editor-in-Chief

Prof. Dr. A. Heidari, Ph.D., D.Sc.
California South University (CSU), Irvine, California, USA

Co-Editors-in-Chief

Prof. Dr. Mohd Zuri Ghani
Universiti Sains Malaysia, Malaysia

Prof. Popoola
Ogun State Nigeria, Nigeria

Dr. Adrian Lawrence P. Carvajal
Management and Technology of St. Paul University Quezon City, Philippines

Prof. Fogwe Zephania Nji
Professor of Geography, University of Douala, Cameroon

Prof. Dr. Dharmendra Singh
University of Science and Technology Aliero, Kebbi State PMB-1144, Nigeria
International Editorial Board

Prof. Dr. Riyaz Sheikh Abdullah
Jazan University, Saudi Arabia

Prof. Dr. Rosemary Ngara
Zimbabwe Open University, Zimbabwe

Prof. Dr. Khatima Khanum
Karachi Pakistan College, Pakistan

Prof. Dr. Pete Mavrokordatos
Tarrant County College, United States

Prof. Dr. Samwel Auya
Maasai Mara University, Kenya

Prof. Dr. Farzam Farzan
St. Berchmans College, Iran, the Islamic Republic of

Prof. Dr. Emel ESEN
Istanbul University, Turkey

Prof. Amruta Amune
College Of Engineering, Ahmednagar

Prof. Chicago Future Fortune
Zimbabwe

Asst. Prof. Mubeen Javed
Punjab University, Pakistan

Dr. Bijan Hajiazizi
Payame Noor University, Iran, the Islamic Republic of

Dr. Dhananjaya Reddy
Govt. Degree College, Andhra Pradesh, India

Dr. Nariman Karam Ravan
Payame Noor University, Iran, the Islamic Republic of

Dr. Patricia Bachiller
Francisco-de-Borja Lasa, Spain

Dr. Luiz Seiti
University “EpremÇabej” Gjirokastra, Albania

Dr. Fadya Abdulraof Menesil
Public university in Benghazi, Libya

Dr. Tuswadi
School of International Development and Cooperation (IDEC) Higashi-Hiroshima, Japan

Dr. Nshimiyimana Alphonse
Catholic University of Rwanda, Rwanda

Technical Support

Web Developer by Kadek Ady Sumiarta, S.Kom
Web Designer, Web Master, Web Admin by Leong

Typical Editor by Prof. Dr. Abdul-Hakim Roslan, Ph.D., Shazida Jan Moh’d Khan, Ph.D.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>No</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>The Implementation of Education National Standard in the Instrument of School Accreditation of Bali Province Education Authority</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Wayan Maba</td>
<td></td>
</tr>
<tr>
<td></td>
<td>http://dx.doi.org/10.21744/irjeis.v3i4.488</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Community Power as a Driving Force for Sustainable Local Development</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>Antonio Vázquez Pérez, María Rodríguez Gámez, Carlos Gustavo Villacres Viteri, Alcira Magdalena Vélez Quiroz</td>
<td></td>
</tr>
<tr>
<td></td>
<td>http://dx.doi.org/10.21744/irjeis.v3i4.489</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>The Effect of Health Education towards Knowledge and Teenager Attitudes in Consuming Liquor, Kupang City in 2016</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>Christine Ekawati, N’Adiputra, Raka Sudewi, Dyah Pradnya Paramita Duarsa</td>
<td></td>
</tr>
<tr>
<td></td>
<td>http://dx.doi.org/10.21744/irjeis.v3i4.495</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Problems Faced by Teachers in Designing and Implementing Authentic Assessment in Science Teaching</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>I Wayan Suastra, Ni Putu Ristiati</td>
<td></td>
</tr>
<tr>
<td></td>
<td>http://dx.doi.org/10.21744/irjeis.v3i4.496</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Bruner’s Cognitive Stages and Their Effects on the Understanding of Fraction Concept</td>
<td>33</td>
</tr>
<tr>
<td></td>
<td>NLMI Dwijayanti, I Gusti Putu Suharta, Sariyasa</td>
<td></td>
</tr>
<tr>
<td></td>
<td>http://dx.doi.org/10.21744/irjeis.v3i4.497</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Ethnomathematics of Balinese Traditional Houses</td>
<td>42</td>
</tr>
<tr>
<td></td>
<td>I Gusti Putu Suharta, I Gusti Putu Sudibarta, I Wayan Puja Astawa</td>
<td></td>
</tr>
<tr>
<td></td>
<td>http://dx.doi.org/10.21744/irjeis.v3i4.501</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Health Behavior and Status Related to Mother's Death in Timor-Leste</td>
<td>51</td>
</tr>
<tr>
<td></td>
<td>Feliciano Pinto, I Ketut Suwiyoga, I Gde Raka Widiana, I Wayan Putu Sutirta Yasa</td>
<td></td>
</tr>
<tr>
<td></td>
<td>http://dx.doi.org/10.21744/irjeis.v3i4.505</td>
<td></td>
</tr>
<tr>
<td>Page</td>
<td>Title</td>
<td>Authors</td>
</tr>
<tr>
<td>------</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>8</td>
<td>Developing Instructional Material for Sepak Takraw Playing Technique Course Completed with Smart Audiovisual to Improve Competencies of the Students of Sport & Health Education Department Ganesha University of Education</td>
<td>I Kêtut Budaya Astra, I Wayan Artanayasa</td>
</tr>
<tr>
<td>9</td>
<td>Continuous Time H-Infinity Filter with Asymptotic Convergence</td>
<td>Swetha Amit, Rào Jitendra R</td>
</tr>
<tr>
<td>10</td>
<td>The Production and Quality of Mott Grass (Pennisetum Purpureum CV. Mott) that Intercropped with Legume in the First Pruning</td>
<td>Yan Tonga, I Nyoman Kaca, Luh Suariyan, I Gede Sutapa, Ni Made Yudistari, Ni Kêtut Etty Switari</td>
</tr>
<tr>
<td>11</td>
<td>Reusing the Coconut Clay (Brick) as Construction Material</td>
<td>Wilter Enrique Ruíz Párraga, Marcos A. Chica Párraga, Mario J. Vega Salazar, Juan J. Howland Albear</td>
</tr>
<tr>
<td>12</td>
<td>Amino Acid Profile on Shank Skin of Livestock and Antibacterial Potential Study</td>
<td>IN. Sumerta Miwadá, IK, Sukadá, W. Sayang Yupardhi, SA. Lindawati</td>
</tr>
<tr>
<td>13</td>
<td>Aquifer Hydraulics Parameters Determination regarding One Well Base on Geostatic Data (A Case Study in Bugbug Karangasem Bali)</td>
<td>I Nengah Simpen, I Nyoman Sutarpa Sutama, I Wayan Redana, Siti Zulaikah</td>
</tr>
</tbody>
</table>
Amino Acid Profile on Shank Skin of Livestock and Antibacterial Potential Study

IN. Sumerta Miwada a
IK. Sukada b
W. Sayang Yupardhi c
SA. Lindawati d

Article history:
Received: 10 February 2017
Revised: 15 June 2017
Approved: 20 July 2017
Published: 28 July 2017

Abstract

The objective of this study is to identify amino acids in the skin character shank of livestock i.e. broiler chicken, cattle and goat which has been hydrolyzed to gelatin. Besides that, also to observe morphology gelatin product with the approach of Scanning Electron Microscope (SEM) and identify potential gelatin-based on livestock against shank skin as the antibacterial ability on the type of Salmonella typhii, Escherichia coli and Staphylococcus aureus. The results showed that the gelatin of the broiler chicken, cattle and goat were dominated by a kind of essential amino acid histidine and arginine. While the type of non-essential amino acids was dominated by glutamic acid and serine. Morphology analysis of the surface of gelatin with SEM approach showed that the surface structure of the gelatin molecule extraction chicken shank skin was more smooth and flat. While at the shank of the extracted skin of cattle and goat were still many bundles detectable binding collagen protein extracted was not perfect. Potential skin gelatin of various livestock shank was conducted testing of potential anti-bacterial. The results showed that the gelatin of the broiler chicken, cattle and goat had no ability as pathogen antibacterial against Salmonella typhii, Escherichia coli and Staphylococcus aureus. The conclusion of the study that the dominant gelatin amino acid profile is detected the essential amino acid histidine and arginine as well as types of non-essential amino acid glutamic acid and serine type. Gelatin morphology analysis with SEM approach is going on a smooth surface on the broiler chicken. Gelatin test results on the ability of pathogenic bacteria inhibition showed negative results (not found inhibitory zone).

Keywords:
SEM; Gelatin; Amino Acid; Shank Skin of Livestock;

2454-2261 © Copyright 2017 The Author. Published by International Journal of College and University. This is an open access article under the CC-BY-SA license (https://creativecommons.org/licenses/by/4.0/) All rights reserved.

a Faculty of Animal Science, Udayana University, Bukit-Jimbaran, Badung, Bali, Indonesia.
b Faculty of Animal Science, Udayana University, Bukit-Jimbaran, Badung, Bali, Indonesia.
c Faculty of Animal Science, Udayana University, Bukit-Jimbaran, Badung, Bali, Indonesia.
d Faculty of Animal Science, Udayana University, Bukit-Jimbaran, Badung, Bali, Indonesia.
1. Introduction

Shank skin of livestock are by product of their slaughter and during years their potentiality is not used maximally yet. For example, shank skin of broiler chicken, goat, and cattle where all their histology structure is sesame, composite of epidermis and corium. This corium is the main component of the skin particularly on livestock shank skin and dominated by collagen protein (Brown et al., 1977), although in different percentage (Miwada and Simpen, 2014). Djoyowidagdo (1988) said that the older the animals, their skin composition particularly collagen protein and fat concentrations are higher, but their ash concentration is getting lower. Soeparno (1998) said that amount and collagen physical strength can increase as the increases of animal age. Swatland (1984) explained that diameter collagen fiber is 1 – 12 µm, but parallel fibril connection that composes it is 20 – 100 nm. Furthermore, it is said that growth rate of collagen fiber is getting decreases until a certain constant age is richer. Sarkar (1995) reported that collagen small animal is about 30 – 33% (dry weight/dw), calf skin (84% dw), steers (87.2% dw) and bulls (91.1% dw).

During years, there is no any study about protein potential on livestock shank skin of Broiler chicken, cattle and goat particularly about profile amino acid that compose protein on animal shank skin which was hydrolyzed become gelatin product. This study is important due to the potential of collagen protein hydrolysis become gellatin is a potential product which is determined by its amino acid compositor. Miwada et al. (2015) explained that advantages of livestock shank skin are as gellatin and its uses as edible to increase the extra value of this by product. This matter is supported by Aprianto (2003) that gelatin can be made from materials rich in collagen i.e. skin. Furthermore, he said that the advantages of gelatin are very flexible, can be functioned as material content of drug capsule, emulsion, binder, deposer, to increase nutritive value and to form an elastic thin layer and also to form transparent film layer, strong and high digestibility. The objective of the study is to identify the character of amino acid on shank skin of Broiler chicken, cattle and goat which were hydrolyzed became gelatin. Besides that, it is also observed the morphology of gelatin product that was resulted with SEM approach and identify gelatin potential base on livestock shank skin to their ability as an antibacterial on Salmonella typhii, Escherichia coli and Staphylococcus aureus.

2. Research Methods

Materials

The main materials used in this study were shanked skin of broiler chicken, shank skin of goat and shank skin of cattle for 1 kg each. Chemicals matter were including acetic acid (1.5%), ethanol, buffer pH 4.00, 7.00, 9.00 and distilled water. Test matter of microbiology including gelatin nutrient, PDA and others were deionized water, ordinary filter paper, Whatman 42 filter paper.

Method

The first step of study implementation is started with made 1.5% concentration of the acetic acid solution. Furthermore, shank skin of Broiler chicken, goat, and cattle that were provided with a method of conventional skinned and protein hydrolysis of livestock shank skin with Miwada and Simpen modification methods (2007 and 2013) including steps of curing with 1.5% concentration acetic acid with 1: 8 ratio. Curing was conducted for 3 days, then it was continued with minimalized of fat content with using 65% ethanol solution (gelatine: ethanol ratio i.e. 1: 2) soaked for 1 hour. The result of fat minimalization was continued with extraction i.e. additional of water distillation (1: 1 ratio) then morn up performed in a water bath at a temperature of 61°C – 65°C for 1 hour, then continued for washing up, filtering, evaporating of extract solution for congealing gelatin product that was obtained. Gelatin characteristic examination of different skin matter was performed through HPLC method, gelatin morphology observation (with SEM approach) and obstruct ability test to Salmonella typhii, Escherichia coli, and Staphylococcus aureus.

3. Results and Analysis

Activities of the study were begun with profile determination of amino acid in gelatin of some livestock shank skin production. This production process was performed with Miwada dan Simpen methods (2007 and 2013) with a little modification. The result of dry gelatin production, in this case, their
amino acids were examined with HPLC method each. Description of each amino acid in every gelatin of livestock shank skin is presented as follows.

Quantitatively, amino acid component figure in gelatin of various livestock shank skin can be presented in Table 1 as follows.

<table>
<thead>
<tr>
<th>Number</th>
<th>Amino Acid</th>
<th>Gelatin of Broiler Chicken Shank Skin</th>
<th>Gelatin of Cattle Shank Skin</th>
<th>Gelatin of Goat Shank Skin</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Aspartic Acid</td>
<td>3.018</td>
<td>3.038</td>
<td>3.668</td>
<td>Schrieber and Gareis (2007)</td>
</tr>
<tr>
<td>2</td>
<td>Glutamic</td>
<td>10.169</td>
<td>10.796</td>
<td>11.782</td>
<td>4.800</td>
</tr>
<tr>
<td>4</td>
<td>Histidine</td>
<td>11.185</td>
<td>11.553</td>
<td>11.775</td>
<td>0.400</td>
</tr>
<tr>
<td>5</td>
<td>Glycine</td>
<td>2.754</td>
<td>3.019</td>
<td>3.205</td>
<td>33.000</td>
</tr>
</tbody>
</table>
Results of the study showed that gelatin of the ssb, ssc and ssg were dominated by essential amino acid i.e. histidine and arginine. On the other hand that non-essential amino acid was dominated by glutamic and serine. Pearson and Dutson (1992) reported that at curing process, change happen as result of skin collagen protein and some certain amino acids denaturation changed chemically. But, an interesting matter that found in this study (Table 1), essential and non-essential amino acids detected same high on the broiler chicken, cattle and goat compare to references of Cshrieber and Gareis (2007).

Morphology analysis of gelatin surface as result of extraction with acetic acid (1.5% concentration) was studied for 3 days through SEM approach. Results of analysis can be seen in Figure 1 completely. Base on SEM test showed that gelatin molecule surface structure of shank skin Broiler chicken extract is softer and flate. But, on shank skin cattle extraction, there is still many bundles of collagen protein detected not extracted completely. Collagen protein extraction of goat shank skin in Figure 1 tends more viicius, and even it is soaked in 1.5% acetic acid concentration for 3 days it still not is able to rich maximum amount of gelatin from shank skin of goat for extracting completely. Result of gelatin surface analysis on shank skin of livestock with SEM approach and this also support by Miwada et al. (2015) that livestock shank skin extract with acetic acid curing method (1.5%) for 3 days resulted in the highest gelatin extraction volume of collagen protein on Broiler chicken shank skin then followed by cattle and goat respectively.

4. Conclusion
The result of the study showed that dominant profile of amino acid detected on gelatin of shank skin of Broiler chicken, cattle and goat were essential amino acid i.e. histidine and arginine and non-essential amino acid i.e. glutamic and serine. The result of gelatin morphology analysis with SEM approach produced a soft surface on the gelatin of broiler chicken shank skin. While gelatin of the cattle shank skin

<table>
<thead>
<tr>
<th>No</th>
<th>Amino Acid</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Threonine</td>
<td>6.353</td>
<td>6.777</td>
<td>6.947</td>
</tr>
<tr>
<td>7</td>
<td>Arginine</td>
<td>6.094</td>
<td>6.508</td>
<td>6.815</td>
</tr>
<tr>
<td>8</td>
<td>Alanine</td>
<td>1.387</td>
<td>1.359</td>
<td>1.450</td>
</tr>
<tr>
<td>9</td>
<td>Tyrosine</td>
<td>1.486</td>
<td>1.682</td>
<td>1.801</td>
</tr>
<tr>
<td>10</td>
<td>Methionine</td>
<td>1.205</td>
<td>1.471</td>
<td>1.545</td>
</tr>
<tr>
<td>11</td>
<td>Valine</td>
<td>1.553</td>
<td>1.498</td>
<td>1.492</td>
</tr>
<tr>
<td>12</td>
<td>Phenylalanine</td>
<td>1.111</td>
<td>1.111</td>
<td>1.165</td>
</tr>
<tr>
<td>13</td>
<td>Isoleusine</td>
<td>3.114</td>
<td>3.156</td>
<td>2.871</td>
</tr>
<tr>
<td>14</td>
<td>Leucine</td>
<td>12.554</td>
<td>11.472</td>
<td>12.351</td>
</tr>
<tr>
<td>15</td>
<td>Lysine</td>
<td>7.516</td>
<td>7.336</td>
<td>7.117</td>
</tr>
</tbody>
</table>

Gelatin potential of various livestock shank skin was tested to their anti bacteria potential. The result of the study showed that gelatin of shank skin of the broiler chicken shank, cattle and goat were had no ability as pathogen antibacterial to Salmonella typhii, Escherichia coli, and Staphylococcus aureus. Those approved by Miwada and Simpen (2014) that bacteria and total colly from Meatballs are still high during their preserves in natural packed (edible coating) of this gelatin type and as an indication that there is no potency to pursue bacteria growth rate.
was seen no extracted completely yet, and the gelatin of goat shank skin was seen more viscous. The result of gelatin test to pursue ability of pathogen bacteria showed negative (no pursue zone).

Acknowledgements
In this opportunity, we would like to express our gratitude to Udayana University and Dirjen Dikti, for their help in financial support on the competitive present that caused the study activities could be performed as usual.

References
Miwada, IN. S. and IN. Simpen. 2014. Production and formulation of gelatin based edible coatings from cattle leg skin and its potential in maintaining the quality of meatballs. Competitive Grant Research Report. Udayana University
Miwada, IN.S., IN. Simpen, M. Hartawan, A.W. Puger and NL.P. Sriyani. 2015. Characteristics of Gelatin from the Foot of Livestock and Its Potential as an Edible Film. Ranch Scientific Magazine. 18(3) : 109-113
Biography of Authors

<table>
<thead>
<tr>
<th>Photo</th>
<th>Address</th>
<th>E-mail</th>
<th>HP</th>
<th>Institution</th>
</tr>
</thead>
<tbody>
<tr>
<td>![Author 1]</td>
<td>Banjar Pangkung, Pejaten, Kediri, Tabanan, Bali</td>
<td>nymsumerta@yahoo.co.id</td>
<td>08585702632</td>
<td>Faculty of Animal Science Udayana University, Bukit Jimbaran-Badung, Bali</td>
</tr>
<tr>
<td>![Author 2]</td>
<td>Jalan Segara Madia, No.2, Lingkungan Tanjung Benoa, Kelurahan Tanjung Benoa, Kecamatan Kuta Selatan, Kabupaten Badung</td>
<td>ketut_sukada888@yahoo.com</td>
<td>082146495250</td>
<td>Faculty of Animal Science Udayana University, Bukit Jimbaran-Badung, Bali</td>
</tr>
<tr>
<td>![Author 3]</td>
<td>Jalan Kembang Matahari No. 8 Denpasar</td>
<td>sayang@umud.ac.id</td>
<td>08179774658</td>
<td>Faculty of Animal Science Udayana University, Bukit Jimbaran-Badung, Bali</td>
</tr>
<tr>
<td>![Author 4]</td>
<td>Jalan Tegal Wangi II gang Cempaka Sari 8A Denpasar Bali</td>
<td>srianggrenindawati@yahoo.co.id</td>
<td>081337325477</td>
<td>Faculty of Animal Science Udayana University, Bukit Jimbaran-Badung, Bali</td>
</tr>
</tbody>
</table>