
16 Published by the Indonesian Society for Clinical Microbiology | JCMID 2021; 1(1): 16-23 

REVIEW

ABSTRACT

Antiviral mechanisms targeting regulatory genes 
Tat and Rev to defeat latent HIV-1 infected T cells: 

a literature review

Erly Sintya1,2*, Ni Luh Putu Harta Wedari3, I Wayan Adi Pranata4, 
Ni Nyoman Sri Budayanti5

Antiviral drug therapies have been utilized to prevent disease progression in patients positive HIV-1. Various research has 
been conducted to investigate and develop a potential functional therapy to suppress HIV-1 replication and cure latent 
HIV-1 in the absence of drugs. Approaches that have been well studied are the anti-HIV-1 which targets RNAs, proteins, or 
peptides expressed by HIV-1 resistant cells, which can be transplanted to the patients. RNA interference in the form of small 
RNA has been proven as a promising therapy to prevent HIV-1 replication. It is utilized for therapy using cell transplantation 
and various gene combinations in clinical trials. However, many studies have been failed to show a successful eradication of 
latently HIV-1 infected T cells. It is happened due to the virus’s ability to escape from antiviral therapies. However, this can be 
overcome by using a combination of ARTs. On the other hand, genetic editing has been intensively studied since it can cure 
various diseases caused by genetic or pathogen infections, including HIV type 1. The previous studies have designed gRNA 
bind to protein Cas type 9 targeting HIV functional genes, Tat and Rev sequences. Various recombination has been introduced 
to CRISPR-based gene editing to increase the binding affinity and efficiency of Cas9 to target Tat and Rev proteins of their 
exons. The best approach for the Cas9 targeted Tat and Rev is by utilizing more than one guide RNA. However, Subsequent 
studies are needed to confirm the ability of Cas9 with various guide RNAs to inhibit virus activation and replication in latent 
HIV-1. This review aims to describe the mechanisms, advantages, and disadvantages of antiviral therapies that target Tat and 
Rev as regulatory genes to eradicate latent HIV-1 infected T cells.
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INTRODUCTION
HIV-1 and HIV-2 have numerous 
similarities, including fundamental 
gene structure, transmission modes, 
intracellular replication pathways, and 
clinical outcomes: both outcomes in 
AIDS. HIV-1 is portrayed by higher 
transmissibility and high progression 
probability to AIDS. Epidemiologically, 
HIV-2 remaining mostly occurs in West 
Africa, while HIV-1 broadens around the 
world. Clinically, HIV-2 tainted people 
appear to dichotomize; most stay as long-
term non-progressors, even though most 
people with HIV-1 infection progress. 
Plasma viral burdens are reliably lower 
in HIV-2 and the average magnitude of 
immune stimulation activation. Cellular 
responses to HIV-2 accomplished more 

polyfunctional and produce higher IL-2; 
humoral immune responses seem more 
extensive with lower extent intra type 
neutralization reactions. The immune 
response elicited by HIV-2 shows up more 
protective against infection progression 
proposing that critical insusceptible 
elements limit viral pathology. If such 
immune response can be replicated or 
instigated in people with HIV-1 infection, 
they may expand survival and decrease 
prerequisites for antiretroviral therapy.1,2

The significant medical development 
in managing people with HIV-1 infection 
has been the antiretroviral (ARV) drugs, 
including nucleoside-analog reverse 
transcriptase inhibitors (NRTIs), non–
nucleoside reverse transcriptase inhibitors 
(NNRTIs), integrase inhibitors, protease 

inhibitors (PIs), fusion inhibitors, and 
coreceptor antagonists. ARV combination 
drastically suppresses viral replication and 
decreases the plasma viral load of HIV-1 to 
underneath the constraints of recognizing 
the most sensitive clinical tests (<50 RNA 
copies/mL), bringing about a critical 
reconstitution of the immune system. 
Although ART ceases HIV replication 
by targeting various strides in the HIV 
life cycle, it could not dispose of the 
necromancy provirus consolidated into 
the host-cell genome. Latent proviruses 
have competency in replicating and 
able to bounce back in instances of ART 
interference or suspension. Generally, the 
small population regarding cells harbors 
provirus being a reservoir of HIV patients 
with ART-controlled and can express 
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spliced transcripts is under the regulation 
of Rev. Within HIV-1-activated T cells, Tat 
and Rev’s proteins give an exceptionally 
significant degree of viral gene expression; 
meanwhile, similar proteins in idle T 
cells are essential for continuing the 
provirus in latent phase. Tat and Rev up 
are pondered as the most effectively and 
functionally conserved HIV-1 genes, 
with some domains of its genomic inside 
possess similar homology across extensive 
subtypes of HIV-1 and HIV-2.2,8,9,10

Vigorous reciprocity linking the 
activation of HIV-1 infected T cell and 
viral regulatory proteins, particularly Tat, 
is a significant regulator of HIV-1 latency 
state and reactivation. When CD4+ T 
cell goes through an effector-to-memory 
transition of T cell, it causes impermanent 
upregulation in the expression of CCR5, 
a viral coreceptor alongside CD4 works 
with HIV passage into the cell, and a rapid 
downregulation in the expression of gene 
expression. HIV in these cells is portrayed 
by repressed transcription of the HIV gene, 
which builds up latency. In a population 
study of recently infected primary T 
cells, an examination of viral RNA using 
single-cell RNAseq demonstrates that 
the transcriptional scheme of T cells by 
central memory marker and naïve T cells 
are related to viral dormancy. At the same 
time, Tat has been embroiled as controller 
master of HIV latency, nevertheless 
the cell states. That is fundamental for 
transcription and replication of the virus; 
accordingly, antiviral proxies that halt Tat 
capacity may obstruct virus production 
by infected cells. Presently, practical 
management for HIV-1 has been suggested 
to utilize a block-and-lock methodology, in 
which anti-HIV proxies that abort HIV-1 
transcription lock the reservoir of cellular 
HIV to a deep-latent, transcriptionally 
silent state, block rebound following 
combined antiretroviral therapy (cART). 
Since Tat transactivation is a basic advance 
in HIV-1 transcription, blocking agents of 
Tat will hinder the viral replication and 
transcription.8,9

Numerous moieties of RNA-based 
and protein-based anti-HIV-1 targeting 
Tat and Rev proteins or the exons have 
been effectively demonstrated to lessen 
viral replication in T cells to a various 
level with techniques including, however, 

not being restricted to Tat/Rev up short 
hairpin RNA (shRNA), antisense RNA, a 
trans-activation response/Rev response 
element (TAR/RRE), mutant elements, 
Tat-/Rev- targeting on ribozymes. 
CRISPR/Cas9 framework abrogated Tat 
and Rev protein expression and their 
regulatory functions within steady 293 T 
cells expressing Tat-/Rev protein. Target-
site sequencing affirmed that mutation 
associated with Cas9 occurs in Tat and Rev 
exons. Meanwhile, no off-target mutations 
were recognized in similar sequences 
with guide RNAs (gRNA) in the human 
genome. CRISPR transduction effectively 
decreased production of the viral capsid is 
a persistent and latent infection of CD4+ 
T-cell lines. These outcomes support the 
possible utilization of CRISPR to target 
HIV-1 regulatory genes specifically 
and conquer viral replication. Current 
modeling proposes inhibitors interface 
with Tat-/Rev protein and interrupt 
transactivation cycle, prompting 
epigenetic changes of nucleosomes in 
the viral promoter can delay extending 
inactivation, or deep dormancy, of HIV 
transcription.11,12,13 

Tat/Rev short hairpin RNA (shRNA)
RNA interference (RNAi) has the ability 
to inhibit gene expression. Short RNA 
particles usually are made that are 
reciprocal to endogenous mRNA and, 
when brought into cells, tie to target 
mRNA. Target mRNA will be inactivated 
functionally by short RNA binding. 
Furthermore, it can cause target mRNA 
degradation. There have been two kinds 
of short RNA particles applied for RNAi. 
Small interfering RNA (siRNA) is a 
double-stranded RNA molecule, about 
20-25 nucleotides in length. siRNA will 
refrain target mRNA until the degradation 
process inside the cell. shRNA is about 80 
bps length include internal hybridization 
domain creating hairpin shape. 
siRNA is constructed from processed 
shRNA molecules. siRNA leads to the 
knockdown of gene expression. shRNA 
can be integrated into plasmid vectors 
and incorporated into genomic DNA, 
resulting in a longer knockdown of target 
mRNA because of its stable expression. 
Functional screening of RNAi knockdown 
required constructive shRNA design. In 

small amounts to none of HIV RNA and 
HIV protein.3,4 

Furthermore, beyond the resting 
memory CD4+ T cells, a reservoir of HIV 
additionally exists inside macrophages, 
myeloid cells, cerebrum microglial cells, 
gut epithelial cells, and hematopoietic 
stem cells (HSCs). The resting memory 
of CD4+ T cell has been the most widely 
studied and is considered the significant 
impediment to eradicating HIV-1. 
Notwithstanding an absence of dynamic 
viral production, patients with latent HIV-
1 infection keep on demonstrating deviant 
cellular signaling and metabolic disorder, 
prompting minor to major systemic and 
cellular comorbidities and complications. 
These involve incorporate damage of 
genomic DNA; attrition of telomere; 
dysfunction of mitochondrial; premature 
aging; and lymphocytic, hepatic, 
renal, cardiovascular, and pneumonic 
dysfunctions.5,6,7 This review highlights the 
benefits and limitations of RNA-, protein-
based therapies as anti-HIV-1 infected T 
cells and promising CRISPR-based gene 
therapy to be further developed to target 
specific regulatory genes (Tat and Rev) in 
order to cure latent HIV-1.

Molecular features of HIV-1
HIV-1 genome is around 9.8 kb long 
includes two viral long-terminal repeats 
(LTRs) situated on both end points as 
incorporated into the host genome. 
The genome additionally includes gene 
encoding for structural protein (Gag, 
Pol, Env), regulatory proteins (Tat, Rev), 
and accessory proteins (Vpu, Vpr, Vif, 
Nef). Tat and Rev are essential genes, 
expression regulators. Tat does not just 
play a significant role in viral transcription 
and replication, but it can also actuate 
cellular gene assortment and be a 
neurotoxic protein. Tat and Rev have an 
important role in virus gene expression 
regulation, respectively, by interacting 
with RNA target components inside 
the leader sequence of 5’ untranslated 
and gene envelope. The effective late 
transcription of HIV-1 after activating the 
virus exceptionally depends on regulatory 
proteins (Tat, Rev) initial expression. Tat 
starts the elongation phase of nascent viral 
mRNA from the incorporated provirus. At 
the same time, the nuclear transport of un-



18 Published by the Indonesian Society for Clinical Microbiology | JCMID 2021; 1(1): 16-23 

REVIEW

constructing optimum sequence, there 
are multi factors affecting shRNA efficacy. 
Additionally, amplification and library 
manufacture issues arise by shRNA stem-
loop hairpin arrangement.11-17 

siRNAs and shRNAs used to virtually 
target Tat, Rev, Gag, Pol, Nef, Vif, Env, 
Env, Vpr, and LTR in HIV-encoded RNA 
inside cell lines. A previous study showed 
that lentiviral vectors induce anti-CCR5 
and CXCR4 shRNAs combination inside 
human lymphocytes. Downregulation 
of the receptors leads to viral infectivity 
inhibition completely compare to controls. 
Nevertheless, as CXCR4 is fundamental 
for homing hematopoietic stem cells to 
marrow and differentiation of T cells, 
targeting CXCR4 is thought not the right 
option as anti-HIV therapy, nor targeting 
fundamental CD4 receptor. As a receptor 
of dendritic cell-specific intercellular 
adhesion molecule-3-grabbing non-
integrin (DC-SIGN) is competent to 
be targeted by siRNAs to halt infection. 
Targeting only CCR5 coreceptors raises 
issues as HIV-1 shifts to CXCR4 in the 
AIDS course producing the abundant 
virulent infection. An effective and 
successful approach using RNAi should 
be able to cover those disadvantages. In 
case of those issues, incorporation of 
shRNAs into the Tat promoter can defeat 
fundamental cellular targets.17-20

Antisense RNA therapy
Present proofs suggest that the natural 
antisense of mammalian RNAs has 
significant roles for cellular homeostasis 
by regulating gene expression. 
Characterization and identification 
of retroviral antisense RNA (asRNA) 
will give novel apprehension regarding 
mechanisms of pathogenesis and 
replication. Previous studies have 
reported HIV-1 encoded asRNA and its 
essential role in viral infection. A study by 
Ishihara et al. demonstrated the depiction 
of HEK293T transcripts that were 
transferred transiently with an expressed 
plasmid of HIV-1NL4-3 DNA within the 
antisense alignment indicates numerous 
antisense transcripts credibly expressed. 
The main structure of an utmost HIV-
1 antisense RNAs structure is related to 
a variation of former antisense protein 
(ASP) mRNA, which is 2.6 kb RNA that 

transcribed through U3 domain of 3’3LTR 
and terminated on envelope area in acute 
or chronic cell lines infection and acute 
human peripheral blood mononuclear 
cells. The reporter probe exhibit HIV-
1 LTR anchors promoter activity in 
reverse alignment. Analysis of mutation 
suggested implication of NF-κΒ binding 
sites in antisense transcription regulation. 
asRNA situated in nuclei of infected cells. 
Expression of antisense RNA able to 
suppress HIV-1 replication for >1 month. 
Moreover, the specific knockdown of 
asRNA magnifies replication and gene 
expression of HIV-1.21

RNA samples of Molt-4 infected 
acutely with HIV-1NL4-3 were analyzed 
to investigate HIV-1 expression asRNA 
in numerous HIV-1 infected cells. The 
investigation was also done in chronic 
infection of HIV-1IIIB in cell lines of ACH-
2 and OM10.1 by using specific antisense 
of RT-PCR. Figure 1A shows Michael et 
al. report of antisense-specific RT PCR 
by Tag-RT-primer with no amplification 
of ASP mRNA; Figure 1B depicts asRNA 
expression in all cell lines. Figure 1C 
exhibits detection of asRNA in PHA 
activated of peripheral blood mononuclear 
cells that infected by HIV-1NL4-3. In addition, 

transcription stopping in OM10.1 and in 
ACH-2 activated cells, in which HIV-1IIB 
has conserved polyadenylation signal, 
were revealed by 3’ RACE examination 
(Figure 1D). Analysis of antisense-specific 
RT-PCR demonstrates TSS of ASP-L of 
HIV-1IIB situated in between 9441 and 
9538 nucleotide positions correlated with 
HIVNL4-3 (Figure 1E). The highest level of 
expression is in OM10.1, whereas HIV-1 
asRNAs expression level was 100-2,500 
lesser than ones in a sense RNA transcript 
inside all cells (Figure 1F).21

Downregulation of viral gene 
replication and expression was done by 
forced expression of ASP-L. Ishihara 
et al. subsequently examined ASP-L 
biologic effects in HIV-1 infected cells, 
then inaugurated Molt-4 transformants, 
which steadily express shRNA targeting 
HIV-1 asRNAs (shRNA#1 and shRNA#2 
shown by Figure 2A). The possible 
intrusion at odds with ssRNAs, some 
mutated nucleotides were inaugurated to 
passenger strands targeting sense HIV-1 
RNAs. Initially, shRNAs specificity was 
examined by luciferase reporters who 
possess a sense or antisense alignment 
in those transformants. Both shRNAs 
specifically diminished the luciferase 

Figure 1. 	 HIV-1 antisense RNA expression in numerous kinds of HIV-1 infected 
cells.21
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pursuit of reporters possess ASP-L 
sequence; meanwhile, the outcomes were 
not significant for reporters possessing 
ssRNA (Figure 2B). Then, examination 
of shRNAs effects in HIV-1 replication. 
Figure 2C depicts that compared to 
control cells, HIV-1 asRNAs expression 
levels in the infected cell were suppressed. 
Significant intensification of sense HIV-1 
RNAs sense levels in ASP-L-knockdown 
was demonstrated by qRT-PCR of RNA 
samples of infected cells compared to 
control cells (Figure 2D).21	

TAR/RRE (Trans-activation response/
Rev response element) decoy
Decoy RNA/DNA has been developed as 
one of the antiviral strategies, including 
for HIV-1 latency. Due to their stable 
shapes, these short RNA/DNA chains or 
aptamers bind to their target with high 
affinity.21 Besides, rather than interact with 
viral DNA/RNA, these small aptamers 
act specifically to bind to a viral target 
protein which has a crucial task in the viral 
replication process. The binding between 
the decoy and target protein prevents 
the virus replication by inactivating 
those proteins.22 Most aptamers have a 
three-dimensional structure like hairpin 
monomers; therefore, it is possible to 
have duplexes23, triplexes24, or even 
quadruplexes25,26 function. However, it 
is not many aptamers have been known 
their particular applications. Thus, 
the systematic evolution of ligands by 
exponential enrichment (SELEX) has been 
utilized to select 20-100 unique sequences 
with a high binding affinity to a certain 

protein family to inhibit viral replication 
and function.27 Aptamers are producible 
and economically synthesized on a large 
scale for medical applications. As well as 
other RNA therapeutics, RNA aptamers are 
often modified during chemical synthesis 
to reduce the activation of nucleases and 
improve their pathological function. The 
chemical modification includes 20 -F, 
20 -OMe, sugar substitutions in LNA, or 
forming spiegelmer aptamer. In addition, 
cholesterol or polyethylene glycol (PEG) 
can be conjugated to the aptamers to 
reduce antibody response and renal 
filtration.27 

HIV-1 formed DNA using their 
reverse transcriptase and integrated their 
DNA into host DNA. Utilizing the host’s 
transcriptase system, the mRNA host 
contains mRNA HIV-1. It is important to 
ensure the mRNA virus does not undergo 
a splicing process before transferred to 
the cytosol host and translated to HIV-
1’ structural proteins.28 Therefore, it is 
critical for the Rev response element 
(RRE) to bind with Rev proteins.29 mRNA 
viruses contain RRE, which bind with Rev 
proteins in the nucleus, and this complex 
is exported to the cytoplasm without 
splicing.30

On the other hand, evading splicing 
is not the only crucial step in the HIV-
1 replication process; initiating the 
transcription also plays an important role 
in HIV-1 replication. This process will 
be started when the Tat protein binds to 
Trans-activation responses (TAR) located 
at RNA complements. This complex 
then induces binding between promotor 

and transcription factors, activating the 
RNA polymerase II and the transcription 
elongation process.  Therefore, besides 
RRE binding, TAR binding also can be a 
target for antiretroviral drugs.31–33

Mimicking the structure of 
transactivation response (TAR) and Rev 
response element (RRE) in HIV-1 with 
RNA decoy is a novel strategy to inhibit 
the HIV-1 regulatory proteins Tat and 
Rev.34  Both RRE and TAR decoys have 
hairpin loop structures that specifically 
bind to Rev and Tat proteins. Additionally, 
TAR and RRE decoys have a higher affinity 
to bind with Tat or Rev proteins, which 
is why this method has the successful 
potential in treating latent HIV infection. 
However. During clinical trials for TAR 
and RRE decoy, it has been found that 
they do not affect the host cell cycle and 
its function. However, these treatments 
do not significantly reduce the HIV-1 
level in plasma subjects.28,35 Therefore, 
this treatment is given in combination 
with another antiretroviral treatment 
mechanism. 

Tat/Rev-targeting ribozyme
Ribozyme is an RNA that cleavage, 
ligation, and peptide form enzymes which 
self-processing, meaning do not require 
catalysis proteins. Besides, it was found 
that ribozyme can specifically recognize 
certain sequences then cleavage them. 
The recognition domain of ribozyme 
can be modified to recognize a specific 
sequence, which leads to site-specific 
cleavage.36 Moreover, as an engineering 
development process, ribozymes undergo 
several selections using in vitro tests 
and direct evolution tests to improve 
their chemical and biological properties 
as therapeutical agents. As chemical 
engineering modification, ribozymes 
were engineered to form an allosteric 
molecule activated by effector molecules, 
called ‘’riboswitches’’.37,38 There are several 
types of ribozymes based on their specific 
functions. However, hammerhead and 
hairpin ribozymes have been studied 
intensively because both have great 
potential as antiviral therapy. In terms of 
the delivery process, ribozyme therapeutic 
can either be delivered as RNA or as 
a therapeutic gene. Due to the lack of 
stability, if ribozyme will be delivered 

Figure 2.	 Endogenous HIV-1 antisense RNA effects on HIV-1 expression.21
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as fully-RNA form, it requires stabilizer 
modification, including terminal inverted 
30 -30 deoxy abasic nucleotides, 50 -PS 
backbone linkage, 20 -O-Me, and 20 
-deoxy-20 -C-allyl uridine.39

Various ribozymes have been developed 
and clinically tested against HIV-1 as a 
gene therapy for infected hematopoietic 
stem cells and T cells positive HIV-1.40–42 
Since HIV-1 mostly infects CD4+ T cells, 
it is crucial to develop a therapeutic system 
that will inhibit infected CD4+ T (latent T 
cell) producing functional HIV-1 virus. 
The in vitro or ex vivo trials utilized either 
T cells from the patient (autologous) or T 
cells from an identical twin (syngeneic), 
which, after the cells are harvested, then 
is treated with the ribozyme-embedded 
gene therapy and reinfused back into the 
patient. In vivo test has been done by 
utilizing Retroviral vectors, facilitating the 
integration of the therapeutic genes into 
the host genome, and showing long-term 
gene expression after integration.29,43 

Intensive research has been done on the 
effect of synthetic ribozymes to target gene 
Tat and Rev in HIV-1. after the mRNA 
containing Tat and Rev is transported to 
the cytoplasm host, synthetic ribozymes 
will bind to Tat and Rev mRNA, then 
catalyze the cleavage of those genes. 
Synthetic hammerhead ribozymes were 
studied extensively and showed that they 
successfully cleaved Tat and Rev RNA 
or exon for Tat and Rev. While all those 
technologies have shown high feasibility 
to produce and high safety level for the 
host, none of the engineered ribozymes 
demonstrated a limited efficacy to reduce 
HIV-1 production from infected CD4+ T 
cells.44

CRISPR-based gene editing
Gene editing-based therapy has been a 
novel innovation for many diseases, like 
cancer and other infectious diseases, which 
still be a complicated matter to cure. zinc 
finger nuclease (ZFN) and transcription 
activator-like effector nuclease (TALEN) 
are site-directed engineered nucleases 
based on DNA-protein recognition 
mechanism. They lead FokI nuclease 
directly to any specific sequence within 
the genome target and digest it. Regardless 
of the remarkable finding, difficulties 
are faced in the synthesis process since 

this technology is specifically made for 
each type of gene interest.45 The fantastic 
finding of bacterial immune system 
mechanism in which potential for gene 
editing enlargement is known as CRISPR 
(the clustered regularly interspaced short 
palindromic repeats). RNA molecule 
called guide-RNA (gRNA) in CRISPR-
associated 9 (Cas9) system is able to 
guide this complex to a specific sequence 
target. As a type of nuclease protein, Cas9 
has the ability to initiate double-strand 
breaks (DSB) within DNA with highly 
efficient and specific. Besides, to utilize 
Cas9 for difference sequence interset, 
it can easily be received by modifying 
gRNA sequence.46 As the newest system 
developed in gene editing, CRISPR 
outperform ZFN and TALEN since it is 
less complex to package into a lentiviral 
vector as cloning and delivery system, 
rarely perform off-target cleavage45,47 less 
costly as it is easier to create, and showing 
high efficacy and promising results on 
infectious and genetic diseases48 including 
HIV-1.49

Several studies have proven that 
CRISPR cleavages within HIV-1 LTR by 
inducing double-strand breaks at 5’ end 
and 3’ end.50 Several mechanisms and Cas9 
targets have been studied to find the most 
efficient mechanism to prevent HIV-1 
replication within the cells using CRISPR-
based. Subsequent studies failed to show 
any excision in structural or functional 
protein genes in the HIV-1 genome. The 
host’s DNA repair mechanism presumably 
causes it. The other study, which targets 
RRE to suppress nuclear export of HIV-
1 genome48,49, shows that bases chain 
variation in RRE can affect the efficiency 
of gRNA and does not have a significant 
effect on inhibiting Rev and RRE binding.51 
Therefore, targeting Rev gene transcription 
or translation process will be more suitable 
to suppress HIV-1 replication. Daugherty 
et al. demonstrated that gRNA targeted 
Rev subdomain B and Tat subdomain A, 
in vitro and ex vivo studies, achieve the 
best result to suppress HIV-1 in infected 
T cells. RevB and TatA sequences are 
predicted as a targeted motif for protein 
function; therefore, by using both as Cas9 
targets, the highest replication inhibition 
can be received.52 However, mutation 
characteristics and efficiency of CRISPR 

may eventually have significant roles in 
increasing the inhibition capacity. It is still 
undefined whether the high frequency of 
indels mutations or frameshift mutations 
are the main factors responsible for the 
wide range of efficiency binding to a gene 
of interest between different gRNAs.53 

Latent HIV-1 is in the inactive phase, 
and since in this state, the virus lacks 
reverse transcriptase factors, indicates 
minor mutations associated with 
resistance have occurred. However, 
in this state, HIV-1 still competent to 
escape from antiretroviral single therapy 
and ZFN.54 Although only has a minor 
mutation, mutations that happened at the 
PAM recognition site have the possibility 
of causing resistance to subsequence Cas9 
proteins activities.55,56 However, recent 
studies demonstrated that utilizing more 
than one gRNA targeting the natural and 
possible mutant sequences causes multiple 
Cas9 cleavage and saturation of virus gene 
sequences, therefore preventing virus 
escape. This mechanism is an analogue to 
the ART combination strategy.53 Ophinni 
et al. mentioned that the most efficient 
combination to prevent latent HIV-1 
replication is by using multiplex gRNAs 
consist of six gRNAs targeted Tat and 
Rev.57  However, subsequent in vivo and 
preclinical studies need to carry out to 
make sure there is no negative impact on 
the host and no off-target cleavage due to 
using several gRNAs. 

Even though CRISPR conveys various 
benefits to improve gene editing-based 
therapy for curing HIV infection, it 
still has a numerous weakness which 
needs to overcome. CRISPR efficiency 
and specificity depend on guide RNA. 
One of the greatest obstacles in CRISPR 
technology is the off-target mechanism 
caused by mismatched pairing between 
guide RNA and DNA target.58 Mismatches 
can be happened due to mutation; 
therefore, gRNA cannot identify the DNA 
target.59 On the other hand, off-target can 
also cause random cleavage to the DNA 
non-target, leading to mutation such as 
deletion, insertion, and point mutation that 
knockdown gene function.60 Accordingly, 
numerous studies have proved that the 
CRISPR activity varies depending on 
the levels of mismatches between gRNA 
and target DNA. Most of the previous 
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publications show that CRISPR tolerated 
single and double mismatches of gRNA61-

65, however, more mismatches of gRNA 
reduce, moreover obliterate the nuclease 
activity. Another research demonstrated 
that five or more mismatches located 
distant to the target sequence also lead 
to off-target. It proves other factors that 
also influence the possibility of off-target 
happened, such as GC content within 
DNA target.63 

Several modifications targeted Cas9 
and gRNA are developed and studied to 
improve the efficiency of CRISPR-CAs9 
activity, including introduce several point 
mutations on the Cas966, utilizing less 
than 20 nucleotides for gRNA sequence 
(truncated gRNA)67, and add additional 
hairpin structures on the gRNA68,69. 
These methods successfully reduce the 
off-target of CRISPR-CAs9. However, 
further research is necessitated to prove 
the stability of CRISPR-CAs9 activity 
with those modifications to different DNA 
targets.

CONCLUSION
Early expression of functional proteins Tat 
and Rev have an important contribution 
to successfully regulate replication and 
followed by HIV-1 activation. Tat initiates 
the transcription from the integrated 
provirus. At the same time, the nuclear 
export of unspliced transcripts is regulated 
by Rev. Tat and Rev are highly conserved 
genes of HIV-1 since both genes have 
similar sequences within HIV-1 subtypes. 
Many anti-HIV-1 therapies targeting Tat 
and Rev proteins or their genes have been 
successfully suppressed viral replication 
in T using various mechanisms, including 
RNA interferences (example: antisense 
and short hairpin RNA), TAR, and RRE 
decoys, mutant molecules, and engineered 
ribozyme. CRISPR/Cas9 shows as an 
encouraging method to target Tat and 
Rev genes. However, antiretroviral 
monotherapy significantly reduces viral 
levels when the latent HIV-1 infected 
T cells are activated. Although, that 
therapy specifically targets the Rev and 
Tat proteins or their gene. Therefore, 
previous studies suggest performing RNA-
based and protein-based combination 
antiviral therapies. As a final goal to cure 

latent HIV-1, various techniques have 
been studied, including gene editing, like 
ZFN and TALEN. This method denotes 
a high potential to cure various diseases, 
including eradicating latent HIV-1. 
However, advanced technology and high 
cost are needed to develop this therapy. 
Fortunately, a novel breakthrough finding 
regarding gene editing development has 
been found and successfully synthesized. 
CRISPR-based gene editing does not 
advance technology and cost-effective 
to produce. Additionally, Cas9 can be 
specifically targeted gene Tat and Rev. 
However, although the mutation rarely 
found at that gene sequence due to lack 
of polymerization in latent HIV-1, some 
mutations still happened and lead to 
resistance to some types of CRISPRs. 
This obstacle is successfully overcome by 
utilizing more than one guide RNA as a 
part of the CRISPR system. Subsequent 
studies are required to confirm that 
CRISPR-based gene therapy is a safe 
treatment for curing latent HIV-1. 
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