Impact Factor: 3.008 (SJIF 2014)

Indexed and Abstracted in:
Honorary Editorial & Advisory Board

Dr. M. Krishana
GKVK, Bangalore, India

Dr. Meitnar Enric
University of New South Wales, Australia

Dr. V. Raja Pendy
Madurai Kamaraj University, Madurai

Dr. P.K. Sinha
Bangalore University, Bangalore, India

Dr. Wreeda De Souza
University of Florida, USA

Dr. Parsu Budathoki
RMIT University, Melbourne, Australia

Dr. Nazia Khan
National University of Sci. & Tech., Islamabad, Pakistan

Dr. Becky Finos
Associate Professor, Deptt. of Biotechnology
Heilbronn University, Germany

Dr. Subha Ganguly, Scientist & P.I, Sub-Projects, AICRP On PHT (ICAR),
Faculty of Fishery Sci., West Bengal University of Animal and Fishery
Sciences, India

Dr. Krishnendra Singh Nama
Sr. Lecturer, Deptt. of Botany, M.B. PG College
Career Point University, Kota, Rajasthan, India

Editor

Dr. Jitendra Mehta
Head and Scientist, Dept. of Biotechnology & Microbiology, Vital Biotech, Kota
Faculty of Biology, Lzebra Institute, Career Point University, Kota, Rajasthan, India
The Effect of Fermented Purple Sweet Potato (*Ipomoea batatas* L.) Skin on Blood Malondialdehyde (MDA), Sugar and Uric acid Concentration of Bali Duck

T.G. Belawa Yadnya, I B.G. Partama, AA.A.S. Trisnadewi, I W. Wirawan, and I G. Ag. I. Aryani

Page No: 1-6
Faculty of Animal husbandry, Udayana University

Enhancing yield performance of Rice cultivar under drought condition using Molecular approaches

Saumya Awasthi and J.P. Lal

Page No: 7-14
Dept. of Genetics and Plant Breeding, Institute of Agriculture Science, BHU, Varanasi, U.P., India

Production and Optimization of Xylanase from *Penicillium* species in Solid-State Fermentation

Indrapal Reddy Addela, Ravi Gujjula, Makam Surender, Shreya Nyapati, Ravinder Rudravaram and Ramesh Bhagam

Page No: 15-21
Sudershan Biotech Ltd, Hyderabad

Seed-borne fungi of pulses and their protease activity on Black gram

Ashok S. Kandhare

Page No: 22-24
Department of Botany, K.M.C. College, Khopoli, District Raigad, Maharashtra,

Identification of RAPD based genetic variability in *Rhizoctonia solani* isolates from Northern India

Rupesh Kumar Chikara, Vijai Malik and Upendra Kumar

Page No: 25-30
Department of Botany, Maharaj Singh College, Saharanpur (UP) INDIA
The Effect of Fermented Purple Sweet Potato (*Ipomoea batatas* L.) Skin on Blood Malondialdehyde (MDA), Sugar and Uric Acid Concentration of Bali Duck

Faculty of Animal husbandry, Udayana University

*Corresponding Author Email: belawayadnya_fapet@yahoo.com

INTRODUCTION

Food containing antioxidant compounds is essential to maintain healthy body. It can be obtained from leaves, fruits and tubers. Antioxidant substances can neutralize free radicals [8]. The presence of free radicals in the body or tissue cells can cause damage to cellular components such as lipids, proteins and nucleic acids and carcinogenic mutations [22]. Purple sweet potato (*Ipomoea batatas* L.) is one of the foods that contain compounds of antioxidants due to the presence of anthocyanin substances. Anthocyanins scattered on the leaves and tubers of purple sweet potato [27] but the fact of purple sweet potato tuber skin has not been proven so further study related to utilization of agricultural waste as an alternative feed ingredients is required. Purple sweet potato produce approximately 20% of fresh skin and 50% dry weight if being dried but relatively high fiber content ballpark is necessary fermented with *Aspergillus niger* since it can increase nutritional value of rations, including an increase in anthocyanin levels and lower crude fiber content of purple sweet potato [24].

ABSTRACT

An experiment was carried out to determine the effect of fermented purple sweet potato (*Ipomoea batatas* L.) skin in diets on Malondialdehyde (MDA), sugar and uric acid of Bali duck blood. Seven treatment diets were used in a completely randomized design (CRD) consisted of control diet A (diet without containing purple sweet potato skin), diet B containing 5% purple sweet potato skin, diet C containing 10% purple sweet potato skin, diet D containing 15% purple sweet potato skin, diet E containing 5% fermented purple sweet potato skin, diet F containing 10% fermented purple sweet potato skin and diet G containing 15% fermented purple sweet potato skin. Five ducks were used with four replications in each treatment. The variables observed as of: blood Malondialdehyde (MDA), level of sugar, level of uric acid, feed anthocyanin consumption and antioxidant capacity. In general, it showed that addition of fermented purple sweet potato skin in the diets significantly reduced blood Malondialdehyde (MDA), level sugar and uric acid. However, the MDA content of duck blood in the treatment B, and sugar content of duck blood in the treatment B, C, and D were found similar to the control diet (P>0.05). Fermented purple sweet potato skin in diets significantly reduced anthocyanin consumption and antioxidant capacity. In contrast, diet without fermented purple sweet potato skin in diets were not significantly different to anthocyanin consumption (P<0.05) compared to control diet.

It can be concluded that fermented purple sweet potato (*Ipomoea batatas* L) skin in diets could improve MDA blood, sugar and uric acid concentration of Bali duck.

Key words: fermented purple sweet potato skin, MDA, sugar, uric acid and Bali duck blood
Free radical activity can be determined by the amount of *malondialdehyde* (MDA) being produced. The amount of MDA positively correlated with the levels of cholesterol in the blood [26]. It was further reported that major consumption of antioxidants ration will decrease MDA in meat accompanied by a decrease in cholesterol levels. Pamungkas [10] reported that extract of leaves and tubers of purple sweet can lower blood sugar levels in mice because of anthocyanin compounds can inhibit the activity of the enzyme α-glucosidase so sugar produced will decrease and affect sugar content in blood. Yandya *et al.*, [27] mentioned that administration of purple sweet potato leaf meal (*Ipomoea batatas* L.), noni leaf (*Morinda citrifolia* L.) and betel leaf (*piper beetle* L.) can decrease blood glucose, uric acid and blood cholesterol of Bali ducks. Sumardika and Jawi [20] conveyed that purple sweet potato extract can improve lipid profiles and Dismutaser Superoxide (SOD) in rats fed with high cholesterol content. Yasa and Jawi [7] reported that administration of ethanol extract of purple sweet potato (*Ipomoea batatas* L.) can reduce blood glucose level and increase amount of antioxidants in rats fed with high glucose. In this case, ration containing fermented purple sweet potato skin on antioxidant capacity of diet, *Malondialdehyde* (MDA), sugar, and blood uric acid are essential to be applied to Bali ducks.

MATERIAL AND METHODS

The research was conducted at Guwang village, Gianyar District, Bali for 10 weeks. The test of antioxidant capacity, anthocyanins diets and blood *Malondialdehyde* (MDA) was carried out in the Laboratory of Analytical, Udayana University for two weeks. Moreover, the analysis of blood sugar and blood uric acid were carried out at the Laboratory of Blood, Wangaya Hospital, Denpasar, Bali for a week. One hundred and fifty Bali ducks were used in the study (3 weeks of age) with range body weight of 287.07 ± 0.34 grams obtained from duck collectors from Gianyar regency.

<table>
<thead>
<tr>
<th>Table 1. Feed Composition of Ducks (3 – 12 weeks of age)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ingredients (%)</td>
</tr>
<tr>
<td>Yellow corn</td>
</tr>
<tr>
<td>Copra meal</td>
</tr>
<tr>
<td>Fish meal</td>
</tr>
<tr>
<td>Rice bran</td>
</tr>
<tr>
<td>Purple sweet potato skin</td>
</tr>
<tr>
<td>Fermented purple sweet potato skin</td>
</tr>
<tr>
<td>Mineral B12</td>
</tr>
<tr>
<td>NaCl</td>
</tr>
<tr>
<td>Coconut oil</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Table 2 Chemical composition of Duck Feed (3 – 12 weeks of age)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chemical Composition</td>
</tr>
<tr>
<td>Metabolizable Energy (Kcal/kg)</td>
</tr>
<tr>
<td>Crude Protein (%)</td>
</tr>
<tr>
<td>Ether Extract (%)</td>
</tr>
<tr>
<td>Crude Fiber (%)</td>
</tr>
<tr>
<td>Calcium (%)</td>
</tr>
<tr>
<td>Phosphor Available (%)</td>
</tr>
</tbody>
</table>
Notes: A is control diet (without purple sweet potato skin), B is diet containing 5.00% purple sweet potato skin, C is diet containing 10.00% purple sweet potato skin, D is diet containing 15% purple sweet potato skin, E is diet containing 5.00% Fermented purple sweet potato skin, F is diet containing 10% fermented purple sweet potato skin, and G is diet containing 15.00 % fermented purple sweet potato skin.

Biofermentation with Aspergillus niger solution on Purple Sweet Potato (Ipomoea batatas L) skin

Purple sweet potato skin was mashed and mixed with Arpergillus niger solution clenched undecomposed inserted into burlap sacks and incubate for a week. After being fermented then dried and ready for the experiment. Seven treatments including control diet were used in a completely randomized design, consisted of: control diet A (without containing purple sweet potato skin), B is diet containing 5.00% purple sweet potato skin, C is diet containing 10.00% purple sweet potato skin, D is diet containing 15% purple sweet potato skin, E is diet containing 5.00% fermented purple sweet potato skin, F is diet containing 10% fermented purple sweet potato skin, and G is diet containing 15.00 % fermented purple sweet potato skin.

Results and Discussion

The duck fed ration without purple sweet potato (treatment A) produce 6.58µL/mL malondialdehyde (MDA) of duck blood (Table 3). In contrast, it could reduce insignificant blood levels of MDA (P> 0.05) in treatment B, whereas the administration of treatment C, D, E, F and G can lower blood MDA levels were significantly different (P <0.05) compared to treatment A. Higher consumption of anthocyanin treatment will affect the ability to neutralize free radicals [8], thus giving treatment C, D, E, F and G could decrease value of MDA. Jawi et al., [7] stated that bigger amount of purple sweet potato extract fed to rats decreased value of MDA. Yadnya et al., [26] also found that greater level of fermented purple sweet potato consumed so MDA in duck meat produced will decrease within their cholesterol level. sugar and uric acid levels in ducks A is equal to 72.75% and 9.885% which is shown in Table 4. In treatment B, C, and D can reduce insignificant blood sugar and blood uric acid ducks (P> 0.05), whereas treatment with the administration of E, F and G can reduce blood sugar and blood uric acid which was significantly different (P <0.05) compared to treatment A. It depends on the ability antioxidants to inhibit the formation of sugar, or ability of antioxidants to inhibit the action of the enzyme α- glucosidase [10], thus resulting sugar can be reduced. or ability of antioxidants to inhibit the formation of uric acid. Martoharsono [9] conveyed that uric acid formation is highly dependent protein concentration or amino acids and activity of enzymes assist in the formation of uric acid. Yadnya et al., [27] mentioned that administration of purple sweet potato leaf flour, beetle leaf and noni leaf could reduce blood sugar and uric acid of ducks since alkaloid compounds able to inhibit activity of enzymes in the formation of glucose and uric acid.
Feed consumption, Feed antioxidant capacity and Feed anthocyanin consumption

Feed consumptions of Bali ducks in treatment C, D, E, F, and G were significantly lower (P<0.05) except treatment B was not significantly than those in control diet (P>0.05). On the contrary, feed antioxidant capacity of ducks in treatment B, C, D, E, F and G were significantly higer than control diet. Moreover, anthocyanin consumption of ducks in treatment B, C, and D were not significantly different (P>0.05) but with treatment E, F can significantly higher (P<0.05) than control diet (Table 4).

Table 3. Blood malondialdehyde (MDA), sugar and uric acid concentration of Bali ducks

<table>
<thead>
<tr>
<th>Variable</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>SEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Malondialdehyde (MDA)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(µL/mL)</td>
<td>6,58a</td>
<td>6,45a</td>
<td>5,85b</td>
<td>3,32c</td>
<td>2,38d</td>
<td>1,61e</td>
<td>1,64f</td>
<td>0,18</td>
</tr>
<tr>
<td>Sugar (%)</td>
<td>72,75a</td>
<td>69,67ab</td>
<td>65,5abc</td>
<td>66,5ab</td>
<td>65,5ab</td>
<td>54,75cd</td>
<td>53,25d</td>
<td>3,47</td>
</tr>
<tr>
<td>Uric acid (%)</td>
<td>9,88a</td>
<td>5,96b</td>
<td>4,82bc</td>
<td>4,54bc</td>
<td>4,09cd</td>
<td>3,31cd</td>
<td>3,00d</td>
<td>0,49</td>
</tr>
</tbody>
</table>

Description: A is control diet (without purple sweet potato skin); B is diet containing 5% purple sweet potato skin; C is diet containing 10% purple sweet potato skin; D is diet containing 15% purple sweet potato skin; E is diet containing 5% fermented purple sweet potato skin; F is diet containing 10% fermented purple sweet potato skin and G is diet containing 15% fermented purple sweet potato skin.

Values in the same row with different superscripts are significantly different (P<0.05)

SEM : Standard Error of the treatment Means

The result indicated that consumption of treatment C, D, E, F and G were significantly lower (P<0.05) than that treatment A. Anthocyanin in purple sweet potato as prebiotic is essential for the growth of microbes that are not pathogen. Provision of purple sweet potato without fermented bacteria can degrade significantly pathogen so nutrient absorbed increased and affected to feed antioxidant capacity and anthocyanin.

Feed antioxidant capacity has positive correlation with anthocyanin consumption. Kumalaningsih [8] stated that there is a trend of higher anthocyanin content could effect to greater antioxidant capacity. According to Yadnya [26], feed antioxidant capacity depend on feed anthocyanin consumption.

CONCLUSION

It was concluded that offered fermented purple sweet potato skin in diet can improve...
malondialdehyde (MDA), level of sugar and uric acid of Bali duck blood.

Acknowledgements
The authors would like to thank DIKTI as the Directorate General of Education of Republic of Indonesia for research fund in the university in 2014 through Rector of Udayana University Cq Chairman of the Institute for Research and Community Services with the Contract Agreement Number : No: 103.13/UN14.2/PNL.01.03.00/2014 in March 3, 2014.

REFERENCES
2. Alfaatih, M. Eko, Widodo and Natsir, M.H. 2008. The use of sweet potato flour Waste Purple (Ipomoea batatas L) in the ration of Broiler Production, Department of Food nutrition ternak Fapet, UB.

