"APLIKASI DAN PENGEMBANGAN TEKNOLOGI RAMAH LINGKUNGAN DALAM BIDANG TEKNIK SIPIL"

Editor:
Prof. Dr. Ir. I Made Alit Karyawan Salain, DEA
Dr. Ir. I Nyoman Sutarja, MS
Ida Bagus Rai Widiarsa, ST, MAsc, PhD
I Gede Adi Susila, ST, MSc, PhD

INNA GRAND BALI BEACH
Sabtu, 25 April
2015

PROGRAM STUDI MAGISTER TEKNIK SIPIL
PROGRAM PASCASARJANA
UNIVERSITAS UDAYANA

Didukung oleh:
“APLIKASI DAN PENGEMBANGAN
TEKNOLOGI RAMAH LINGKUNGAN
DALAM BIDANG TEKNIK SIPIL”

Editor :
Prof. Dr. Ir. I Made Alit Karyawan Salain, DEA
Dr. Ir. I Nyoman Sutarja, MS
Ida Bagus Rai Widiarsa, ST, MASc, PhD
I Gede Adi Susila, ST, MSc, PhD

INNA GRAND BALI BEACH
Sabtu, 25 April

2015

PROGRAM STUDI MAGISTER TEKNIK SIPIL
PROGRAM PASCASARJANA
UNIVERSITAS UDAYANA

Didukung oleh:
DAFTAR ISI

KATA PENGANTAR .. i
SAMBUTAN ... iii
KOMITE ILMIAH .. v
DAFTAR ISI .. vii

KEYNOTE SPEAKER

STRATEGI PERANCANGAN DAN PELAKSANAAN KONSTRUKSI BETON YANG SUSTAINABLE KS-1

BIDANG STRUKTUR DAN MATERIAL

KUAT LEKAT TULANGAN BAMBU APUS DENGAN PENAMBAHAN PIN PADA MUTU BETON K-175 .. SM-1

APLIKASI ARTIFICIAL NEURAL NETWORK SEBAGAI METODE NUMERIK UNTUK PREDIKSI KAPASITAS GESER BALOK BETON BERTULANG .. SM-7

PENGARUH PERENDAMAN TERHADAP POLA KerUSakan SIRAP BAMBU SEBAGAI PENUTUP ATAP ANGKUL-ANGKUL DI DESA ADAT PENGLIPU ... SM-15

PERILAKU SAMBUNGAN TIPE FRIKSI DENGAN VARIASI GAYA PENGENCANGAN AKIBAT PERBEDAAN METODE PELAKSANAAN .. SM-23

PROPERTI MATERIAL DAN DAKTILITAS BETON PRATEKAN PARSIAL HASIL UJI EKSPERIMENTAL ... SM-31

PENGARUH KUAT TEKAN DAN KOMPOSISI BAHAN BETON DENGAN SUBSITUSI AGREGAT KASAR .. SM-39

KUAT TEKAN DAN MODULUS ELASTISITAS BETON RINGAN DENGAN MENGGUNAKAN AGREGAT BATU APUNG SERTA ABU TERBANG SEBAGAI PENGANTI SEBAGIAN SEMEN PORTLAND DAN SUPERPLASTICIZER .. SM-45

ANALISIS PERBANDINGAN EFISIENSI STRUKTUR BAJA DENGAN SISTEM RANGKA PEMIKUL MOMEN KUSUS DAN SISTEM RANGKA BRESING EKSENTRIK PADA LEVEL KINERJA YANG SAMA ... SM-49

IDENTIFIKASI KERUSAKAN DAN METODE PERKUATAN STRUKTUR KANTOR GUBERNUR SUMATRA BARAT .. SM-57

ANALISA PERILAKU PARAMETER NON-LINIER BETON TAK TERKEKANG DENGAN PEMBEBANAN TRIAKSIAL MENGGUNAKAN PROGRAM BANTU BERBASIS FINITE ELEMENT SM-65

KUAT TUMPU BATANG POHON KELAPA LAMINASI (GLUGU LAMINASI): HALF HOLE DAN FULL HOle ... SM-73

KAPASITAS LENTUR DAN DAYA LAYAN BALOK BETON BERTULANGAN BAMBU PETUNG SM-81

TAHANAN LATERAL KOMPOsIT KAYU KELAPA (GLUGU) LAMINASI-BETON DENGAN VARIASI PANJANG TERTANAM ALAT SAMBUNG (DOWEL) ... SM-89

KEMAMPUAN DAKTILITAS BAJA TULANGAN DENGAN MUTU DIATAS 500 MPA UNTUK DISAIN STRUKTUR KOLOM TAHAN GEMPAB .. SM-97
KEMAMPUAN DAKTILITAS PENAMPANG BALOK MENGGUNAKAN BAJA TULANGAN DENGAN MUTU DIATAS 500 MPa UNTUK DISAIN STRUKTUR TAHAN GEMPA .. SM-105

PENGGUNAAN AKSELERATOR PADA BETON YANG MENGGUNAKAN PEREKAT BERupa CAMPURAN SEMEN PORTLAND TIPE I DAN ABU TERBANG .. SM-113

ANALISIS GEMPA STATIK DAN DYNAMIK PADA STRUKTUR BERATURAN DAN TIDAK BERATURAN .. SM-119

PEMODELAN KEKUATAN AKSIAL KOLOM BETON BUIJURANGKAR DIPERKUAT DENGAN FRP ... SM-127

PEMANFAATAN ABU DAUN BAMBU DALAM PEMBUATAN BETON RINGAN PENGGUNAAN KUAT TEKAN DAN MODULUS ELASTISITAS .. SM-135

UPAYA PENINGKATAN KUALITAS SIRAP BAMBU SEBAGAI BAHAN PENUTUP ATAP ANGKUL DI DESA PANGLIPURAN .. SM-143

RUMAH SEDERHANA DENGAN SISTEM STRUKTUR BETON BERTULANG BAMBU PETUNG NUSA PENIDA .. SM-151

ANALISA PERKUATAN (RETOFITTING) GEDUNG STKIP ADZKIA PADANG DENGAN MENGGUNAKAN STEEL BRACING .. SM-159

EVALUASI BEBAN HANCUR SILINDER BETON MENGGUNAKAN PENDEKATAN ANALISIS DIMENSIONAL METODE Rayleigh ... SM-167

PEMANFAATAN POZZOLAN ALAM SEBAGAI BAHAN PLESTERAN ... SM-173

ANALISA DRIFT-BASE FRAILITY: EVALUASI HASIL EKSPERIMENTAL DAN NUMERIKALT DINDING BATU BATA DAN RANGKA KAYU .. SM-177

EVALUASI KINERJA STRUKTUR AKIBAT PENGARUH GEMPA (STUDI KASUS GEDUNG D DAN GEDUNG E FAKULTAS TEKNIK UNIVERSITAS JENDERAL SOEDIRMAN) ... SM-187

BIDANG GEOTEKNIK

STUDI LABORATURIUM PENGAHU AGGREBIND PADA TANAH DENGAN VARIASI GRADASI BUTIR UNTUK MENINGKATKAN NILAI CBR, KEKUATAN TEKAN DAN PERMEABILITAS TANAH. GT-1

PROFIL PENURUNAN TANAH PADA TANAH YANG DIKOMPAKSI DI LABORATURIUM GT-9

ANALISIS PENGAHU RETAK TERHADAP KEKUATAN GESER TANAH PADA PERISTIWA KELONGSORAN TEBIND ... GT-15

PERBANDINGAN MODULUS GESER TANAH LEMPUNG DENGAN PERKUATAN SERAT IJUK DAN SERAT SABUT KELAPA BERDASARKAN METODE HARDIN DAN BLACK ... GT-21

KUAT GESER SISA CAMPURAN LEMPUNG DAN PASIR YANG DIPADATKAN .. GT-29

TINJAUAN KORELASI NILAI CBR TANAH KAPUR ANTARA UJI CBR LANGSUNG DENGAN UJI DCP ... GT-37

PENGAHU PROSES KONSOLIDASI TERHADAP DEFORMASI DAN FAKTORE KEMAMANAN LERENG EMBANKMENT (STUDI KASUS BENDUNG KOSINGGOLAN) .. GT-45

ANALISIS STABILITAS DINDING PENAHAN TANAH KANTILEVER (STUDI KASUS PROYEK PEMBANGUNAN GERBANG TOL DAN LAJUR TRANSAKSI GERBANG TOL SERANG TIMUR)........ GT-53
BIDANG MANAJEMEN PROYEK DAN REKAYASA KONSTRUKSI

PERAN UNDANG-UNDANG KEINSINYURAN 2014 DALAM MENDORONG TENAGA AHLI KONSTRUKSI BERAWASAN TEKNOLOGI RAMAH LINGKUNGAN ... MK-1

KONSTRUKSI JALAN HIJAU (GREEN ROAD CONSTRUCTION) PROSPEK PENERAPAN KONSTRUKSI JALAN HIJAU DI INDONESIA ... MK-7

COST MODEL ESTIMASI KONSEPTUAL UNTUK BANGUNAN GEDUNG RUMAH SAKIT MK-15

ANALISIS PENGGUNAAN SISTEM PENUTUP ATAP METAL, BITUMEN, DAN UPVC DITINJAU DARI TATA LAKSANA DAN BIAYA .. MK-25

FAKTOR PENGENDALI DAN PERLUASAN SENTRA BISNIS BERBASIS BANGUNAN HIJAU DI SURABAYA .. MK-33

IDENTIFIKASI FAKTOR KINERJA BIAYA PROYEK KONSTRUKSI GEDUNG .. MK-41

STUDI PERANCANGAN PRODUKSI PAPAN BUBUTMEN ... MK-49

IDENTIFIKASI DAN ANALISIS RISIKO KESELAMATAN DAN KESEHATAN KERJA (K3) PADA PROYEK KONSTRUKSI BANGUNAN BERTINGKAT TINGGI ... MK-55

ANALISIS IDENTIFIKASI CRITICAL SUCCESS FACTORS (CSFs) TERHADAP MANAJEMEN BIAYA PADA PROYEK KONSTRUKSI .. MK-65

EVALUASI IMPLEMENTASI ASPEK KESELAMATAN DI ZONA KERJA (WORK ZONE) PADA PELOKSAANAN PENINGKATAN JALAN NASIONAL DI PROVINSI BALI ... MK-75

FAKTOR YANG MEMPENGARUHI PENGHUNI DALAM MEMILIH RUMAH DI PERUMAHAN DI KAWASAN MANGUPURA ... MK-81

MANAJEMEN RISIKO PADA PROYEK GEDUNG HOTEL YANG SEDANG BEROPERASI MK-89

FAKTOR-FAKTOR MOTIVASI KERJA PADA PEKERJA KONSTRUKSI .. MK-97

KARAKTERISTIK MANAJER PROYEK TERHADAP KINERJA KONSTRUKSI GEDUNG DI KABUPATEN BADUNG ... MK-105

ANALISIS PERBANDINGAN HARGA SATUAN DAN TITIK IMPAS PEKERJAAN BEKISTING KOLOM SISTEM KONVENSIONAL DENGAN SISTEM PERI DALAM PELAKSANAAN PROYEK KONSTRUKSI GEDUNG .. MK-115

ANALISIS KEUNTUNGAN KONTRAKTOR AKIBAT VARIASI SISTEM PEMBAYARAN DAN JADWAL PELAKSANAAN PROYEK KONSTRUKSI .. MK-123

BIDANG TRANSPORTASI

EVALUASI TERHADAP PENURUNAN KINERJA PELABUHAN LAUT CELUKAN BAWANG BULELENG .. TRANS-1

APLIKASI TEKNOLOGI SOFTWARE SIDRA INTERSECTION 5.1 DAN SOFTWARE KAJI DALAM PENENTUAN KINERJA SIMPANG BERSINYAL PERKOTAAN .. TRANS-9

KAJIAN PEMANFAATAN SIRTU BUMELA SEBAGAI MATERIAL LAPIS PONDASI BAWAH DITINJAU DARI SPEFIKASI UMUM 2007 DAN 2010 ... TRANS-19

PENGEMBANGAN PELAYANAN ANGKUTAN UMUM MASAL (BRT) BERBASIS SISTEM TRANSYT MENGGUNAKAN METODE LOW COST INVESTMENT (ANGKUTAN TRANS MATARAM METRO) .. TRANS-25
ANALISIS KAPASISTAS LINGKUNGAN JALAN SEBAGAI PENDUKUNG ANALISIS DAMPAK LALU LINTAS (ANDALALIN) PEMBANGUNAN HOTEL GOLDEN TULIP MATARAMTRANS-35

APLIKASI TEKNOLOGI GIS DALAM MENENTUKAN BENTUK PENANGANAN JALAN BERDASARKAN PARAMETER PENANGANAN JALAN ..TRANS-43

EVALUASI PEMBANGUNAN JALAN CISALATRI BANDUNGTRANS-51

PENINGKATAN STABILITAS CAMPURAN ASPAL EMULSI DINGIN (CAED) DENGAN BAHAN DARI AGREGAT HASIL GARUKAN ASPAL LAMA DENGAN DAN TANPA SEMENTRANS-59

ANALISA KELAYAKAN DIMENSI RUNWAY, TAXIWAY, DAN APRONTRANS-67

PARTISIPASI MASYARAKAT DALAM PENGAWASAN SARANA PRASARANA JALAN TAMAN KONSERVASI L Aut LELE KABUPATEN BONE BOLANGO PROVINSI GORONTALOTRANS-75

MODEL PERPINDAHAN MODA KE BUS KOTA DI KOTA BANDA ACEHTRANS-83

PENGARUH TEMPERATUR PERMUKAAN LAPIAS PERTAMA OVERLAY TERHADAP DAYA REKAT OVERLAY GANDA TANPA TACK COAT ..TRANS-91

KAJIAN FINANSIAL DAN DAMPAK PENGOPERASIAN ANGKUTAN UMUM MASSAL TRANS SARAGITA KORIDOR I DI PROVINSI BALI ..TRANS-101

BIDANG SUMBER DAYA AIR

PENGARUH PEMOMPAAN SUMUR BOR TERHADAP PERUBAHAN MUKA AIR TANAH HIDRO-1

IMPLEMENTASI INTEGRATED WATER RESOURCES MANAGEMENT (IWRM) DI INDONESIA HIDRO-9

PEWILAYAHAN POTENSI AIR TANAH UNTUK IRIGASI BERDASARKAN TRASNSMISIVITAS AKUIFER DI KABUPATEN JOMBANG .. HIDRO-17

KAJIAN KERUSAKAN PANTAI AMPENAN DI KOTA MATARAM .. HIDRO-25

SISTEM PENYEDIAAN AIR MINUM DI KOTA DENPASAR ... HIDRO-33

DESAIN PENAMPANG SALURAN DRAINAGE JALAN RAYA DENGAN KONSEP EKO HIDRAULIK PADA JALAN A.YANI KOTA MARTAPURA .. HIDRO-41

ANALISIR ERA AIR BERBASIS DAERAH ALIRAN SUNGAI SEBAGAI INDIKATOR KETERPADUAN PENGELOLAAN SUMBER DAYA AIR (KASUS DAS JANGKOK WS LOMBOK) .. HIDRO-47

TINJAUAN HIDRODINAMIKA 1D METODE MAC CORMACK MENGENAI KARAKTERISTIK PASANG SURUT UNIT TERANTANG DI KALIMANTAN SELATAN HIDRO-55

PERMASALAHAN SEMPADAN SUNGAI DI SUNGAI KUALA KAPUAS, KALIMANTAN SELATAN .. HIDRO-63

PENERAPAN SUMUR RESAPAN DALAM MEREDUKSI BEBAN ALIRAN LIMPASAN PERMUKAAN SUB DAS CIUJUNG SEBAGAI UPAYA PENGELOLAAN BANJIR HIDRO-69

ANALISA PERBANDINGAN PERENCANAAN SUMUR RESAPAN SISTEM KOMUNAL DAN KOLAM RETENSI SEBAGAI UPAYA KONSERVASI AIR TANAH DI PERUMAHAN VILLA MUTIARA CIUJUNG .. HIDRO-77

PEMISAHAN ALIRAN DASAR MENGGUNAKAN MODEL TANGKI HIDRO-83

STUDI PEMENUHAN AIR BAKU DI KABUPATEN SIGI, SULAWESI TENGAH HIDRO-89
PEMANFAATAN SUMBER DAYA AIR DAS PENET SEBAGAI AIR IRIGASI DAN AIR BAKU PDAM

PEMANFAATAN TEKNOLOGI REMOTE SENSING DALAM MEMANTAU KERUSAKAN LINGKUNGAN DI KOTA GORONTALO

MODEL NUMERIK : INTERAKSI RUN UP GELOMBANG TSUNAMI DENGAN DINING LAUT

VISUALISASI POTENSI GENANGAN BANJIR DI SUNGAI LAMBIDARO MELALUI PENELUSURAN ALIRAN MENGGUNAKAN HEC-RAS (STUDI PENDAHULUAN PENGENDALIAN BANJIR BERAWASAN LINGKUNGAN)

BIDANG LINGKUNGAN

PEMANFAATAN LIMBAH SEKAM PADI DAN FLY ASH MENJADI BAHAN BANGUNAN UNTUK MENGURANGI DAMPAK LINGKUNGAN

PEMANFAATAN PLAT CETAK BEKAS SEBAGAI PELAPIS PADA ATAP RUMAH

PEMANFAATAN SAMPAH SEBAGAI CAMPURAN BATU ALAM DAN APLIKASINYA

ANALISIS SICK BUILDING SYNDROME PADA GEDUNG KANTOR (STUDI KASUS PADA GEDUNG SATKER PELAKSANAAN JALAN NASIONAL WILAYAH II PROVINSI BALI - BALAI PELAKSANAAN JALAN NASIONAL VIII DIREKTORAT JENDERAL BINA MARGA , JALAN AHMAD YANI NO 90 DENPASAR)
ANALISIS PERBANDINGAN EFISIENSI STRUKTUR BAJA DENGAN SISTEM RANGKA PEMIKUL MOMEN KHASUS DAN SISTEM RANGKA BRESING EKSENTRIK PADA LEVEL KINERJA YANG SAMA

I Ketut Sudarsana¹, Ida Ayu Made Budiwati¹, dan I Gede Juliarta²

¹Jurusan Teknik Sipil, Universitas Udayana-Bali
Email: ksudarsana@civil.unud.ac.id
²Alumni Jurusan Teknik Sipil, Universitas Udayana-Bali

ABSTRAK

Kata kunci: kinerja struktur, life safety, pushover analysis,SRBE, struktur baja, SRPMK.

1. PENDAHULUAN

Menurut FEMA 356/440, level kinerja suatu struktur dapat dijadikan acuan dalam perencanaan berbasis kinerja dimana level kinerja struktur terdiri atas 3 level kinerja, yaitu Immediate Occupancy, Life Safety, dan Collapse Prevention. Penentuan level kinerja suatu struktur diukur berdasarkan kriteria roof drift ratio atau drift ratio yang perpindahan horizontal atau disebut dengan tinggi struktur dari taraf penjepitan. Dalam penentuan level kinerja Roof drift ratio dicari berdasarkan target perpindahan struktur yaitu perpindahan maksimum yang terjadi saat struktur menerima gempa rencana.

Pada struktur bangunan tahan gempa, material baja banyak dipergunakan karena sifatnya yang daktail. Dalam SNI 1726:2013 diuraikan ada beberapa sistem struktur bangunan baja diantaranya sistem rangka pemikul momen (SRPM) dan sistem rangka bresing (SRB). Kinerja dari sistem-sistem struktur baja ini tentu berbeda terhadap pengaruh gempa. FEMA 356/440 mensyaratkan roof drift ratio untuk masing-masing level kinerja dari SRPM
I Ketut Sudarsana

<table>
<thead>
<tr>
<th>Level Kinerja</th>
<th>SRPM</th>
<th>SRB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Immediate Occupancy</td>
<td>0% < Drift < 0.7%</td>
<td>0% ≤ drift < 0.5%</td>
</tr>
<tr>
<td>Life safety</td>
<td>1% ≤ Drift < 2.5%</td>
<td>0.5% ≤ Drift < 1.5%</td>
</tr>
<tr>
<td>Collapse prevention</td>
<td>2.5% ≤ Drift < 5%</td>
<td>1.5% ≤ Drift < 2%</td>
</tr>
</tbody>
</table>

Tabel 1. Kriteria roof drift ratio dari SRPM dan SRBE untuk menentukan level kinerja

2. METODE ANALISIS

Pemodelanstruktur

Penelitian ini menganalisis struktur baja untuk gedung beraturan dengan panjang bentang 6 m pada Arah X dan Y dengan sistem rangka pemikul momen khusus (SRPMK) dan sistem rangka bresing eksentrik (SRBE) seperti terlihat masing-masing pada Gambar 1 dan 2.

Adapun variasi jumlah tingkat yang ditinjau adalah 4, 7, dan 10 tingkat untuk mewakili struktur tingkat rendah, menengah dan tinggi. Pada model SRBE, Tipe bresing berbentuk *inverted V* dengan panjang link diambil sebesar 300 mm sesuai hasil penelitian sebelumnya (Mustopo dan Mirza, 2006; Dwitama, 2013). Semua model struktur memiliki tinggi tingkat 4 m. Komponen struktur kolom dan balok menggunakan baja IWF dengan kuat leleh (fy) dan ultimit (fu) masing-masing 250 MPa dan 410 MPa. Modulus elastisitas baja (Es) 200.000 MPa.

Gambar 1. Denah model struktur SRPMK (a), Portal model 10 tingkat Arah X (b), Arah Y (c)

Gambar 2. Denah model struktur SRBE (a), Portal model 10 tingkat Arah X (b), Arah Y (c)
Semua model yang ditinjau dibebani dengan beban mati tambahan sebesar 392 kg/m² pada lantai dan 320 kg/m² pada atap. Sedangkan beban hidup yang diperhitungkan untuk fungsi bangunan sebagai kantor 250 kg/m² pada lantai dan 100 kg/m² pada atap. Beban gempa rencana dihitung berdasarkan analisis beban gempa statik ekivalen mengacu pada SNI 1726:2012 untuk kategori desain seismik D. Gaya gempa pada masing-masing tingkat dikerjakan pada masing-masing pusat massa tingkat dari struktur gedung.

Analisis struktur dan desain

Seluruh model SRPMK dan SRBE dianalisis dan didesain dengan bantuan software commercial SAP2000v15. Adapun desain elemen struktur dikontrol berdasarkan nilai stress ratio ≤ 0,95 sesuai dengan persyaratan Load Resistant Factor Design (LRFD). Secara umum diketahui bahwa kolom, balok, dan bresing pada lantai paling bawah merupakan yang paling kritis sehingga direncanakan memiliki stress ratio yang paling kritis pula yaitu mendekati 0,95. Setelah semua model memiliki kecukupan dimensi untuk memikul beban-beban yang bekerja, kemudian baru dilakukan analisis nonlinear static pushover untuk mengetahui bahwa dimensi elemen struktur yang dipilih mampu menghasilkan target kinerja yang diharapkan yaitu life safety.

3. HASIL DAN PEMBAHASAN

Dimensi komponen struktur

Hasil desain struktur berupa dimensikomponen struktur (balok, kolom, dan bresing) yang telah memenuhi persyaratan LRFD dengan stress ratio ≤ 0,95 seperti terlihat pada Tabel 2. Kolom, balok, dan bresing pada lantai paling bawah memiliki stress ratio paling kritis yaitu paling mendekati 0,95. Setelah dimensi semua model struktur yang ditinjau memenuhi, analisis static nonlinear pushover dilakukan untuk mendapatkan level kinerja yang sama untuk semua model struktur yaitu life safety.
Tabel 2. Dimensi komponen struktur untuk masing-masing model

<table>
<thead>
<tr>
<th>Model</th>
<th>Tingkat</th>
<th>Rentang Tingkat</th>
<th>Kolom Pinggir</th>
<th>Kolom Tengah</th>
<th>Balok Induk</th>
<th>Balok Anak</th>
<th>Link</th>
<th>Balok Di Luar Link</th>
<th>Bresing</th>
</tr>
</thead>
<tbody>
<tr>
<td>SRPMK</td>
<td>4</td>
<td>1 - 4</td>
<td>HP 14x102</td>
<td>HP 16x141</td>
<td>S 12x50</td>
<td>S 10x35</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>1 - 4</td>
<td>HP 16x162</td>
<td>HP 18x204</td>
<td>S 15x50</td>
<td>S 10x35</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>5 - 7</td>
<td>HP 10x57</td>
<td>HP 16x121</td>
<td>S 12x50</td>
<td>S 10x35</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5 - 7</td>
<td>HP 16x183</td>
<td>HP 18x204</td>
<td>S 18x54,7</td>
<td>S 10x35</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8 - 10</td>
<td>HP 14x117</td>
<td>HP 18x204</td>
<td>S 18x54,7</td>
<td>S 10x35</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>SRBE</td>
<td>4</td>
<td>1 - 4</td>
<td>HP 8x36</td>
<td>HP 12x63</td>
<td>S 10x35</td>
<td>S 10x35</td>
<td>S 10x35</td>
<td>S 10x35</td>
<td>HP 10x42</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>1 - 4</td>
<td>HP 10x42</td>
<td>HP 16x121</td>
<td>S 10x35</td>
<td>S 10x35</td>
<td>S 10x35</td>
<td>S 10x35</td>
<td>HP 10x42</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>5 - 7</td>
<td>HP 8x36</td>
<td>HP 10x57</td>
<td>S 10x35</td>
<td>S 10x35</td>
<td>S 10x35</td>
<td>S 10x35</td>
<td>HP 10x42</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8 - 10</td>
<td>HP 14x117</td>
<td>HP 18x204</td>
<td>S 18x54,7</td>
<td>S 10x35</td>
<td>S 10x35</td>
<td>S 10x35</td>
<td>HP 10x42</td>
</tr>
</tbody>
</table>

Kurva pushover hasil analisis pushover

Kurva hasil analisis pushover berupa kurva hubungan antara gaya geser dasar (V) dengan simpangan horizontal atas seperti terlihat pada Gambar 5 sampai 7 untuk masing-masing variasi jumlah tingkat yang ditinjau. Perilaku kurva pushover dari model struktur SRPMK untuk 4, 7, dan 10 tingkat memiliki kecenderungan yang sama, begitu juga untuk model struktur SRBE. Untuk model struktur SRPMK, gaya geser dasar terus meningkat sampai keruntuhan terjadi yang didentifieriskasikan oleh terjadinya beberapa sendi plastis mencapai kondisi *collapse*. Hal ini berbeda dengan perilaku model struktur SRBE dimana setelah tercapai gaya geser maksimum, kemampuan struktur menahan beban naik-turun (*jagness*). Kondisi *jagness* dari kurva pushover model SRBE mungkin disebabkan adanya interaksi dari bresing. Bila dilihat dari kemiringan dalam menunju beban punvaknya, struktur SRBE memiliki kekakuan yang jauh lebih besar dari SRPMK untuk semua tingkat yang ditinjau. Untuk mencapai level kinerja yang sama yaitu life safety dari model struktur dengan dimensi-dimensi yang diperoleh hasil desain sesuai beban berlaku, terlihat bahwa deformasi horizontal SRPMK jauh lebih besar dari SRBE.

Gambar 5. Perbandingan kurva pushover model SRPMK dan SRBE 4 tingkat dalam Arah X dan Y

Gambar 6. Perbandingan kurva pushover model SRPMK dan SRBE 7 tingkat dalam Arah X dan Y

Gambar 7. Perbandingan kurva pushover model SRPMK dan SRBE 10 tingkat dalam Arah X dan Y
Analisa Perbandingan Efisiensi Struktur Baja dengan Sistem Rangka Pemikul Momen Khusus dan Sistem Rangka Bresing Eksentrik pada Level Kinerja yang sama

Dalam analisis static nonlinear pushover, keruntuhan dari model struktur dianggap terjadi apabila satu atau lebih sendi plastis yang terbentuk mencapai kondisi collapse. Gambar 8 - 10 menunjukan sendi plastis pada salah satu portal arah X dan Y dari semua model struktur yang ditinjau pada kondisi batas.

![Gambar 8. Sendi plastis pada SRPMK dan SRBE pada kondisi batas untuk struktur 4 tingkat](image1)

![Gambar 9. Sendi plastis pada SRPMK dan SRBE pada kondisi batas untuk struktur 7 tingkat](image2)

![Gambar 10. Sendi plastis pada SRPMK dan SRBE pada kondisi batas untuk struktur 10 tingkat](image3)

Titik kinerja struktur (performance point)

Titik kinerja struktur (performance point) dievaluasi berdasarkan metode displacement coefficient FEMA 356 dan mencakup target perpindahan struktur. Target perpindahan dan besarnya gaya geser dasar pada saat tercapainya target perpindahan tersebut ditampilkan pada Tabel 3.
I Ketut Sudarsana

Tabel 3. Target perpindahan dan gaya geser dasar semua model dalam arah sumbu X dan Y pada kondisi performance point

<table>
<thead>
<tr>
<th>Parameter</th>
<th>SRPMK 4 lantai</th>
<th>SRPMK 7 lantai</th>
<th>SRPMK 10 lantai</th>
<th>SRBE 4 lantai</th>
<th>SRBE 7 lantai</th>
<th>SRBE 10 lantai</th>
</tr>
</thead>
<tbody>
<tr>
<td>C0</td>
<td>1.31</td>
<td>1.31</td>
<td>1.38</td>
<td>1.39</td>
<td>1.47</td>
<td>1.47</td>
</tr>
<tr>
<td>C1</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>C2</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>C3</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>Sa</td>
<td>0.40</td>
<td>0.41</td>
<td>0.26</td>
<td>0.27</td>
<td>0.21</td>
<td>0.21</td>
</tr>
<tr>
<td>Te</td>
<td>1.34</td>
<td>1.31</td>
<td>2.07</td>
<td>2.03</td>
<td>2.59</td>
<td>2.52</td>
</tr>
<tr>
<td>δt (mm)</td>
<td>232.26</td>
<td>227.67</td>
<td>380.77</td>
<td>374.87</td>
<td>504.64</td>
<td>492.04</td>
</tr>
<tr>
<td>Vt (KN)</td>
<td>4727.69</td>
<td>4882.76</td>
<td>6016.45</td>
<td>6211.72</td>
<td>6964.09</td>
<td>7256.14</td>
</tr>
</tbody>
</table>

Tabel 3 menunjukkan bahwa struktur SRBE memiliki target perpindahan dan gaya geser dasar yang lebih rendah dari struktur SRPMK. Perbandingan persentase target perpindahan dan gaya geser dasar untuk masing-masing variasi jumlah lantai dapat dilihat pada Gambar 8 hingga Gambar 11. Semakin tinggi jumlah tingkat suatu struktur maka persentase perbandingan target perpindahan dan gaya geser dasar dari kedu sistem struktur ini semakin kecil, kecuali pada SRPMK 10 lantai arah Y dimana persentase perbandingan gaya geser dasarnya lebih besar dari SRPMK 7 lantai arah Y. Hal ini mungkin disebabkan oleh kontribusi mode yang lebih tinggi dan denah struktur yang lebih panjang dalam arah Y.

Gambar 8. Perbandingan target perpindahan terhadap variasi tingkat dalam Arah X

Gambar 9. Perbandingan target perpindahan terhadap variasi tingkat dalam Arah Y

Gambar 10. Perbandingan gaya geser seismik terhadap variasi tingkat dalam Arah X

Gambar 11. Perbandingan gaya geser seismik terhadap variasi tingkat dalam Arah Y

Level kinerja struktur

Level kinerja dari semua model struktur diukur berdasarkan roof drift ratio pada saat target perpindahan tercapai seperti terlihat pada Tabel 4. Sebagai contoh perhitungan diambil model struktur SRPMK 10 tingkat pada arah X dimana target perpindahan tercapai pada step 4 yaitu sebesar (δt) 504,64 mm dengan gaya geser seismik sebesar 6964,09 KN. Level kinerja kemudian didapat dari hasil perhitungan roof drift ratio sebagai berikut:

\[
\text{Roof Drift Ratio} = \frac{\delta t}{H_{total}}
\]

\[
= \frac{504.64}{6964.09} = 0.0126 = 1.26 \%
\]

Program Studi Magister Teknik Sipil, Program Pascasarjana Universitas Udayana
Analisa Perbandingan Efisiensi Struktur Baja dengan Sistem Rangka Pemikul Momen Khusus dan Sistem Rangka Bresing Eksentrik pada Level Kinerja yang sama

Tabel 4. Roof drift ratio dan level kinerja pada semua model struktur

<table>
<thead>
<tr>
<th>Metode FEMA 356</th>
<th>SRPMK 4 lantai</th>
<th>SRPMK 7 lantai</th>
<th>SRPMK 10 lantai</th>
<th>SRBE 4 lantai</th>
<th>SRBE 7 lantai</th>
<th>SRBE 10 lantai</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>252.26</td>
<td>237.67</td>
<td>380.77</td>
<td>374.87</td>
<td>504.64</td>
<td>492.04</td>
</tr>
<tr>
<td>Y</td>
<td>126.54</td>
<td>126.73</td>
<td>262.26</td>
<td>263.84</td>
<td>373.11</td>
<td>373.78</td>
</tr>
<tr>
<td>Vt (KN)</td>
<td>4727.69</td>
<td>4882.76</td>
<td>6016.45</td>
<td>6211.72</td>
<td>6964.09</td>
<td>7256.14</td>
</tr>
<tr>
<td>Roof Drift Ratio (%)</td>
<td>1.45</td>
<td>1.36</td>
<td>1.26</td>
<td>1.23</td>
<td>0.79</td>
<td>0.79</td>
</tr>
<tr>
<td>Level Kinerja</td>
<td>LS</td>
<td>LS</td>
<td>LS</td>
<td>LS</td>
<td>LS</td>
<td>LS</td>
</tr>
</tbody>
</table>

Tabel 4 menunjukkan bahwa baik model struktur SRPMK maupun SRBE untuk ketiga tingkat yang ditinjau sudah mencapai level kinerja life safety mengacu pada ketentuan drift dari FEMA 356. Pada level kinerja yang sama (life safety), kemampuan struktur SRBE dalam memikul gempa lebih kecil dari struktur SRPMK. Namun bila ditinjau pada kondisi simpangan yang sama pada saat tercapainya beban maksimum dari SRBE, gaya geser seismik dari SRPMK jauh lebih kecil seperti terlihat pada Gambar 5 - 7.

Perbandingan material baja

Pada struktur 4 lantai SRPMK akan lebih berat sebesar 29,70 % (45,18 ton) dibandingkan dengan SRBE. Pada struktur 7 lantai SRPMK akan lebih berat sebesar 26,42 % (75,54 ton) dibandingkan dengan SRBE. Dan pada struktur 10 lantai SRPMK akan lebih berat sebesar 19,68 % (83,39 ton) dibandingkan dengan SRBE.

Gambar 12. Persentase perbandingan kebutuhan material baja

Tabel 5. Perbandingan berat material baja

<table>
<thead>
<tr>
<th>Model</th>
<th>Jenis Struktur</th>
<th>Berat Material Baja (Ton)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>SRPMK 4 Lantai</td>
<td>132.12</td>
</tr>
<tr>
<td>2</td>
<td>SRBE 4 Lantai</td>
<td>166.94</td>
</tr>
<tr>
<td>3</td>
<td>SRPMK 7 Lantai</td>
<td>285.91</td>
</tr>
<tr>
<td>4</td>
<td>SRBE 7 Lantai</td>
<td>210.57</td>
</tr>
<tr>
<td>5</td>
<td>SRPMK 10 Lantai</td>
<td>427.71</td>
</tr>
<tr>
<td>6</td>
<td>SRBE 10 Lantai</td>
<td>340.32</td>
</tr>
</tbody>
</table>

4. KESIMPULAN

Dari hasil analisis dan pembahasan dapat diambil kesimpulan, bahwa perbandingan efisiensi antara struktur baja dengan Sistem Rangka Pemikul Momen Khusus (SRPMK) dan struktur baja dengan Sistem Rangka Bresing Eksentrik (SRBE) pada level kinerja yang sama yaitu Life Safety yang mengacu pada ketentuan SNI 1726:2012 adalah:

1. Pada level kinerja yang sama yaitu Life Safety, SRPMK memiliki target perpindahan dan gaya geser seismik yang lebih besar dari SRBE. Semakin tinggi jumlah tingkat maka persentase perbandingannya semakin kecil.
2. SRPMK memiliki nilai berat total material baja yang lebih besar dari SRBE pada level kinerja yang sama yaitu level kinerja Life Safety. Semakin tinggi jumlah tingkat maka persentase perbandingan material baja yang digunakan antara kedua struktur semakin kecil.

Program Studi Magister Teknik Sipil, Program Pascasarjana Universitas Udayana

SM-55
UCAPAN TERIMAKASIH
Penulis mengucapkan terimakasih kepada pihak-pihak yang telah membantu dan memberikan masukan dalam proses penelitian dan penulisan karya ilmiah ini.

DAFTAR PUSTAKA

