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B-1,3-Galactosyl-O-Glycosyl-Glycoprotein
B-1,6-N-Acetylglucosaminyltransferase 3 Increases MCAM Stability,
Which Enhances S100A8/A9-Mediated Cancer Motility

I Wayan Sumardika,*{ Chen Youyi,* Eisaku Kondo,$ Yusuke Inoue,§ I Made Winarsa Ruma,* ¥
Hitoshi Murata,* Rie Kinoshita,* Ken-Ichi Yamamoto,* Shuta Tomida,{ Kazuhiko Shien,#
Hiroki Sato,# Akira Yamauchi,** Junichiro Futami,{{ Endy Widya Putranto,% Toshihiko Hibino,§§
Shinichi Toyooka J#]J Masahiro Nishibori,## and Masakiyo Sakaguchi*

*Department of Cell Biology, Okayama University Graduate School of Medicine,
Dentistry and Pharmaceutical Sciences, Okayama, Japan
fFaculty of Medicine, Udayana University, Bali, Indonesia
iDivision of Molecular and Cellular Pathology, Niigata University Graduate School of Medical
and Dental Sciences, Niigata, Japan
§Faculty of Science and Technology, Division of Molecular Science, Gunma University, Gunma, Japan
J[Department of Biobank, Okayama University Graduate School of Medicine,
Dentistry and Pharmaceutical Sciences, Okayama, Japan
#Departments of Thoracic, Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine,
Dentistry and Pharmaceutical Sciences, Okayama, Japan
**Department of Biochemistry, Kawasaki Medical School, Okayama, Japan
T1Department of Medical and Bioengineering Science, Okayama University Graduate School of Natural
Science and Technology, Okayama, Japan
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We previously identified novel S1I00A8/A9 receptors, extracellular matrix metalloproteinase inducer
(EMMPRIN), melanoma cell adhesion molecule (MCAM), activated leukocyte cell adhesion molecule
(ALCAM), and neuroplastin (NPTN) B, that are critically involved in SI00A8/A9-mediated cancer metastasis
and inflammation when expressed at high levels. However, little is known about the presence of any cancer-
specific mechanism(s) that modifies these receptors, further inducing upregulation at protein levels without any
transcriptional regulation. Expression levels of glycosyltransferase-encoding genes were examined by a PCR-
based profiling array followed by confirmation with quantitative real-time PCR. Cell migration and invasion
were assessed using a Boyden chamber. Western blotting was used to examine the protein level, and the RNA
level was examined by Northern blotting. Immunohistochemistry was used to examine the expression pattern
of B-1,3-galactosyl-O-glycosyl-glycoprotein 3-1,6-N-acetylglucosaminyltransferase 3 (GCNT3) and MCAM
in melanoma tissue. We found that GCNTS3 is overexpressed in highly metastatic melanomas. Silencing and
functional inhibition of GCNT3 greatly suppressed migration and invasion of melanoma cells, resulting in the
loss of STO0A8/A9 responsiveness. Among the novel ST00A8/A9 receptors, GCNT3 favorably glycosylates
the MCAM receptor, extending its half-life and leading to further elevation of S100A8/A9-mediated cellular
motility in melanoma cells. GCNT3 expression is positively correlated to MCAM expression in patients with
high-grade melanomas. Collectively, our results showed that GCNT3 is an upstream regulator of MCAM pro-
tein and indicate the possibility of a potential molecular target in melanoma therapeutics through abrogation of
the ST00A8/A9-MCAM axis.

Key words: S100A8/A9; GCNT3; Glycosylation; Receptor; Metastasis
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INTRODUCTION

A single glycosyltransferase is able to induce glycosy-
lation of many different proteins, especially in integrated
membrane proteins and secreted proteins, through an
endoplasmic reticulum (ER)/Golgi pathway'™. There-
fore, a simple change of enzymes at expression levels can
affect the function of many different glycoproteins, which
in turn will significantly influence cell responsiveness'*,
metabolism'*, growth'’, and motility"®, leading to the
development and progression of several diseases'™. Accu-
mulating evidence indicates that glycosylation changes are
involved in tumor progression'™"'. One notable involve-
ment is in tumor cell dissemination®®’, since interactive
communication between cells or between cells and sur-
rounding tissue is strongly regulated by the relationship
between ligand and receptor molecules, most of which
are glycoproteins.

S100A8 and S100A9 are small EF-hand calcium-
binding proteins belonging to the S100 family and have
been shown to be highly expressed in and secreted by
keratinocytes, myeloid cells, and neutrophils under
inflammatory conditions in vitro and in vivo'>". They
physiologically form a heterodimer complex, simply
termed S100A8/A9 or calprotectin'>', a major func-
tional form reported to be in close association with can-
cer metastasis'>'>™"?, The secreted extracellular ST00AS/
A9 functions as ligands to the canonical receptor Toll-
like receptor 4 (TLR4)">* and the receptor for advanced
glycation end products (RAGE)'®*"* on the surfaces
of cells, triggering cancer cell dissemination. We have
been studying this interesting heterodimer protein for
a long time to determine its biological significance in
cancer progression'®". Our search for other unknown
receptors for ST00A8/A9 resulted in the discovery of
novel SI00A8/A9 receptors in cancer cells, extracellular
matrix metalloproteinase inducer (EMMPRIN)'®, mela-
noma cell adhesion molecule (MCAM), and activated
leukocyte cell adhesion molecule (ALCAM)", which
play a critical role in cancer metastasis. Together, we
termed these receptor proteins “S100 soil sensor recep-
tors” or simply SSSRs'’. These receptors are highly gly-
cosylated, owing to their cell surface location as receptors
utilizing the ER/Golgi pathway. In a study by Bubka
et al., glycosylation of MCAM by mannosyl (B-1,4-)-
glycoprotein  B-1,4-N-acetyl-glucosaminyltransferase
(MGAT3) or mannosyl (o-1,6-)-glycoprotein 3-1,6-N-
acetyl-glucosaminyltransferase (MGATS5) did not result
in significant differences in the viability of cancer cells
and the capability of cancer cells to migrate through the
endothelial layer”. Even so, it is still not known whether
there is any cancer-specific glycosylation of SSSRs
and whether these modifications have any functionally
important properties.

SUMARDIKA ET AL.

In this study, we found that the B-1,3-galactosyl-O-
glycosyl-glycoprotein B-1,6-N-acetylglucosaminyltrans-
ferase 3 (GCNT3) was efficiently upregulated in malig-
nant melanoma cells, lung cancer cells, and mesothelioma
cells compared to their nonmalignant immortalized cell
counterparts. GCNT3 induced a marked increase in
S100A8/A9-mediated cell migration and invasion through
the functional activation of MCAM, but other SSSRs,
EMMPRIN, RAGE, and ALCAM, did not. Interestingly,
we also found that GCNT3-mediated glycosylation of
MCAM is elevated in cancer cells that are linked to an
increase in stability between the engagement of S100A8/
A9 and MCAM. These novel findings provide insights
into the pivotal role of GCNT3-mediated MCAM glyco-
sylation in SI00A8/A9-mediated cancer progression.

MATERIALS AND METHODS
Cell Culture and Chemicals

The following two human melanoma cell lines estab-
lished from the same patient were used: WM-115 (derived
from the primary tumor; ATCC, Rockville, MD, USA) and
WM-266-4 (derived from a metastatic site; ATCC). These
cell lines were cultivated in D/F medium (Invitrogen,
Carlsbad, CA, USA) supplemented with 10% fetal bovine
serum (FBS; Intergen, Purchase, NY, USA). Talniflumate,
a novel and specific inhibitor of GCNT3’, and cyclohe-
ximide, an inhibitor of protein translation, were purchased
from commercial sources, Tokyo Chemical Industry
(Tokyo, Japan) and Sigma-Aldrich (St. Louis, MO, USA),
respectively.

Plasmid Constructs

For temporal expression, we used the pIDT-SMART
(C-TSC) vector, also named pCMViR-TSC*. A series of
cDNAs was inserted into pIDT-SMART (C-TSC). Human
cDNAs encoding full-length RAGE”, EMMPRIN®,
MCAM, and ALCAM" were designed for expression
as C-terminal 3xHA-6His-tagged forms. Human cDNAs
encoding full-length polypeptide N-acetylgalactosami-
nyltransferase 12 (GALNT12), GCNT3, and mannosyl
(0-1,3-)-glycoprotein B-1,4-N-acetylglucosaminyltrans-
ferase, isozyme A (MGAT4A) were designed for expres-
sion as C-terminal 3xMyc-6His-tagged forms. A catalytic
dead GCNT3 (mutGCNT3) cDNA was designed for expres-
sion as C-terminal deletion form (lacking the region from
323 aa through 438 aa) with the same epitope, 3xMyc-
6His, at its C-terminal end. Cells were transiently trans-
fected with the plasmid vectors as described above using
FuGENE HD (Promega BioSciences, San Luis Obispo,
CA, USA).

We established stable clones, which showed indefi-
nitely stable expression of the aberrant GCNT3-Myc with
much higher efficiency. The clones were established by a
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convenient electroporation gene delivery method using an
improved plasmid construct based on the pIDT-SMART
(C-TSC) vector™.

RNA Interference

Predesigned siRNAs for human GCNT3 (#I, ID No.
s17676; #I1, ID No. s17677; #III, ID No. s17678) and
control siRNA (silencer negative control 2 siRNA) were
purchased from Ambion (Austin, TX, USA). siRNAs
were transfected using Lipofectamin RNAiIMAX reagent
(Invitrogen).

S100A8/A9 Recombinant Protein

S100A8/A9 was prepared as reported previously'.
In brief, human S100A8/A9 recombinant protein was
expressed using the FreeStyle 293 Expression System
(Invitrogen), which enabled the production of a large
amount of secreted SI00A8/A9 in the culture medium.
The secreted SI00A8/A9 was then purified by Talon®
Metal Affinity Resin (Takara Bio, Shiga, Japan).

Western Blotting

Western blot analysis was performed under conven-
tional conditions. The following antibodies were used:
rabbit anti-human GCNT3 antibody (GeneTex, Irvine, CA,
USA), rabbit anti-MCAM antibody (Epitomics Abcam,
Cambridge, MA, USA), mouse anti-Myc tag antibody
(clone 9B11; Cell Signaling Technology, Beverly, MA,
USA), mouse anti-human B-actin (Sigma-Aldrich), and
mouse anti-human tubulin antibody (Sigma-Aldrich).
The rabbit anti-MCAM antibody (Epitomics Abcam) was
biotinylated using a Biotin Labeling Kit-SH (Dojindo
Molecular Technologies, Rockville, MD, USA) to recover
antibody-free samples after immunoprecipitation using
streptavidin—agarose (Invitrogen). N-acetyl-D-glucosamine
(GIcNACc) bound to the precipitated MCAM protein was
detected using HRP-conjugated wheat germ agglutinin
(WGA,; Vector Laboratories, Burlingame, CA, USA).

Northern Blotting

Ten micrograms of total RNA isolated by the acid
guanidinium thiocyanate/phenol-chloroform method was
electrophoresed in a 1% agarose gel and transferred to
a Nytran Plus nylon membrane (GE Healthcare Bio-
Sciences, Piscataway, NJ, USA). Partial coding regions
of human MCAM (480 bp) and glyceraldehyde-3-phos-
phate dehydrogenase (GAPDH; 450 bp) genes were used
as biotin probes for Northern blot analysis.

Quantitative RT-PCR

Quantitative RT-PCR was performed on a LightCycler
rapid thermal cycler system (ABI 7900HT; Applied
Biosystems, Foster City, CA, USA) using LightCycler 480
SYBR Green I Master (Roche Diagnostics, Indianapolis,
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IN, USA) according to the manufacturer’s instructions.
Forward and reverse primer pairs used (5’ to 3") are listed
in Supplementary Table 1 (available at https://www.dropbox.
com/s/mnve32hwx0h8n64/2017-07-12%20Sumardika%
20et%?20al-SuppleData%20Rev.pptx?dl=0). GAPDH was
used as a reference gene. The amounts of mRNA were
normalized to those of GAPDH and are presented as
ratios to those of the untreated control.

Invasion and Migration Assay

Cells were starved by serum-free D/F medium for
24 h prior to an invasion and migration assay. Cell inva-
sion or migration was assayed using the Boyden cham-
ber method with filter inserts (pore size, 8 um) precoated
(for invasion assay) or not precoated with Matrigel (for
migration assay) in 24-well plates (BD Biosciences,
Franklin Lakes, NJ, USA). Cells (3x10* cells/insert)
were seeded on the top chamber. The top chamber was
filled with serum-free D/F medium, and the bottom cham-
ber was filled with 10% FBS D/F medium. The recom-
binant SI00A8/A9 was then set in the bottom chamber
at a final concentration of 100 ng/ml. After incubation
for 12 h in the case of WM-266-4 cells and for 24 h in
the case of WM-115 cells, cells that passed through the
filter and were attached to the lower surface of the fil-
ter were counted by staining with 0.01% crystal violet
in 25% methanol. Cells attached to the lower surface of
the filter membrane were then quantified by cell count-
ing in five nonoverlapping fields at 100x magnification
and are presented as the average from three independent
experiments.

Immunohistochemistry

The studies using patient-derived tissue sections were
approved by the research ethics committees of Niigata
University Medical and Dental Hospital. Written informed
consent was obtained from each patient for use of the
materials. Paraffin-embedded tissue specimens were col-
lected through the donation of patient-derived tissue
samples from Niigata University Medical and Dental Hos-
pital. Immunostaining was carried out on human malignant
melanoma and benign nevus tissues. The staining method
was the same as that previously reported'. Briefly, immuno-
staining was carried out using primary antibodies to rabbit
anti-MCAM antibody (Epitomics Abcam) and rabbit anti-
human GCNT3 antibody (GeneTex). Final detection was
performed with the AEC reagent (HISTOFINE Simple
Stain AEC Solution; Nichirei Biosciences, Tokyo, Japan).

Statistical Analysis

Results are expressed as meanstSD unless other-
wise indicated. Statistical analysis was performed by the
Mann—Whitney U-test. Values of p<0.05 were consid-
ered statistically significant.



434

RESULTS

Glycosyltransferases, GALNT12, GCNT3, and MGAT4A,
Are Overexpressed in Various Cancer Cells

To identify a glycosyltransferase(s) that is associated
with metastatic signatures via SI00A8/A9-SSSRs signal-
ing, we first compared the expression levels of key glyco-
syltransferase-encoding genes in nonmetastatic WM-115
melanoma cells at the primary site and in highly meta-
static WM-266-4 cells that were derived from the same
patient®®*’. For serial analysis, we used a PCR-based pro-
filing array (data not shown) and subsequent confirma-
tion by quantitative real-time PCR analysis using primers
that were different to those used in the profiling array.
The analysis revealed eight genes [GALNT3 (polypep-
tide N-acetylgalactosaminyltransferase 3), GALNT12,
GCNT3, MANI1CI1 (mannosidase a class 1C member 1),
MGAT4A, MGAT4C (mannosyl (o-1,3-)-glycoprotein
B-1,4-N-acetylglucosaminyltransferase, isozyme C), NEU3
(neuraminidase 3 (membrane sialidase)), and ST8SIA6
(ST8 o-N-acetyl-neuraminide o.-2,8-sialyltransferase 6)]
that were significantly upregulated in WM-266-4 cells
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by threefold compared to the levels in WM-115 cells
(Fig. S1; supplemental figures available at https://www.
dropbox.com/s/mnve32hwx0h8n64/2017-07-12%20
Sumardika%?20et%20al-SuppleData%20Rev.pptx ?d1=0).
We further analyzed the expression levels of the eight
genes in other metastatic melanoma cell lines (MMACc,
MeWo, A2082, and SK-Mel2) in comparison to the levels
in WM-115 cells and normal human melanocytes (NMC).
The results showed three genes (GALNT12, GCNTS3, and
MGAT4A) that outstandingly displayed high expression
levels consistently in at least three metastatic cells lines
compared to the levels in nonmetastatic cells, WM-115
and NMC cells (Fig. S2). We also found that these genes
showed relatively high expression levels with some
variations among different cancer species compared to
the levels in nonmetastatic immortalized cells (Fig. S3).
GALNTI12 was upregulated in lung cancer cells and
mesothelioma cells. GCNT3 was elevated in skin and
mesothelioma cells and in some lung and breast cancer
cells. MGAT4A expression level was higher in skin can-
cer cells and some lung cancer cells. The results suggest
that these three glycosyltransferases may have a critical
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Figure 1. Effects of glycosyltransferases on SI00A8/A9-induced migration and invasion. Migration (left) and invasion (right) of
WM-115 cells transfected with indicated genes [green fluorescence protein (GFP) as a control] were assessed by the Boyden chamber
method. The transfected WM-115 cells were placed in the insert chamber, and purified recombinant STO00A8/A9 (final concentration of
100 ng/ml) was added to the bottom well. The quantified results were viewed from the upper surface of the insert chamber membrane,
and representative images of migrating or invading cells were obtained using crystal violet staining at the lower side. Data are shown

as meanstSD. *p<0.05 and **p<0.01.
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set on the top chamber and then stimulated by the pres-

metastasis. The Boyden chamber technique is a conve-
nient and powerful tool for monitoring cancer motility
and invasion, and we therefore used this assay system to
assess cancer behavior. WM-115 cells that were ectopi-
cally overexpressed with the three candidate genes were
ence of SI00A8/A9 in the bottom chamber. Interestingly,
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We next examined whether these three candidate genes
show any correlation to S100A8/A9-mediated cancer

GCNT3 ENHANCED S100A8/A9-MEDIATED CANCER MOTILITY
role in cancer progression in a manner specific to their

expression in different cancer species.
GCNT3 Plays a Key Role in SI00A8/A9-Mediated

Cancer Motility

cells transfected with indicated combinations of the genes [empty vector (EV) and GFP used as controls] were assessed by the Boyden
chamber method. The transfected WM-115 cells in the top chamber were stimulated or not stimulated with the purified recombinant

each S100 soil sensor receptors (SSSR) on S100A8/A9-induced migration and invasion. Migration (A) and invasion (B) of WM-115
S100A8/A9 (final concentration of 100 ng/ml). Data are shown as means£SD. *p<0.05, **p<0.01, and ***p<0.001.

Figure 2. Effects of GCNT3 (B-1,3-galactosyl-O-glycosyl-glycoprotein B-1,6-N-acetylglucosaminyltransferase 3) combined with
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Figure 3. Immunohistochemistry analysis of melanoma cell adhesion molecule (MCAM) and GCNT3 in melanoma tissues. MCAM
and GCNT3 were immunostained using red stain (right) in nevus (A) and melanoma (B). The images on the left are hematoxylin—eosin
(H&E)-stained images corresponding to the MCAM- and GCNT3-stained images on the right.

GALNT12 and GCNT3, but not MGAT4A, induced an
increase in S1I00A8/A9-mediated migration as well as
invasion. The highest activity was provided by the forced
expression of GCNT3 (Fig. 1). A similar tendency was
also observed in the assessment of the lung immortal-
ized cell line BEAS-2B (Fig. S4). BEAS-2B cells require
extracellular SIO0A8/A9 for their receptors to function,

and we therefore examined whether overexpression of
GCNT3 affects the currently identified ST00A8/A9 recep-
tors including RAGE, MCAM, ALCAM, and EMMPRIN
in terms of their abilities for cellular motility upon
S100A8/A9 stimulation. Through this approach, we found
that MCAM was the only protein required for not only
acceleration of SI00A8/A9-mediated migration (Fig. 2A)
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Figure 4. Effect of inhibition of intrinsic GCNT3 on S100A8/A9-induced migration and invasion. (A) Protein levels of MCAM and
GCNT3 were compared between WM-115 and WM-266-4 cells by Western blotting. Protein levels of MCAM were determine by
Western blotting after treatment of WM-266-4 cells with the indicated siRNAs (final concentration of 20 nM) (B) and with talniflumate
(Tal) (final concentration of 100 uM) (C). After treatment of WM-266-4 cells with the indicated siRNAs (final concentration of 20
nM) (D) or Tal (final concentration of 100 uM) (E), migration of the treated cells was assessed by the Boyden chamber method. The
treated cells in the top chamber were stimulated or not stimulated with purified recombinant SI00A8/A9 (final concentration of 100
ng/ml). The quantified results are displayed on the left, and representative images of migrating cells detected by crystal violet staining
are shown on the right. Data are shown as means+SD. *p <0.05, ***p<0.001.
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but also invasion in WM-115 cells (Fig. 2B). This was
more obvious in the invasion assessment. Furthermore,
in BEAS-2B cells, MCAM responsiveness to S100A8/
A9 during an invasion assay (Fig. S5B) was significantly
increased by GCNT3 combination rather than that at
migration assay (Fig. S5A). Taken together, these results
indicate that GCNT3 has a role for enhancing S100A8/
A9-MCAM responsiveness as a metastatic signature.

GCNT3 Expression Is Overlapped by MCAM
Expression in Melanoma Tissue

We examined the clinical relevance of expression
patterns of GCNT3 and MCAM using tissues obtained
from melanoma patients. Because of the melanin-based
brown color, we stained the melanoma tissues using red
stain. As shown in Figure 3A, in nevus cases, MCAM
was stained in some small parts with weak signals, and
GCNT3 was hardly detected in any of the cases. On the
other hand, in melanoma tissues, MCAM was strongly
stained with membrane localization, and GCNT3 was
also clearly positive in the intracellular area of melanoma
regions (Fig. 3B). These results indicate that GCNT3
expression is positively correlated with MCAM expres-
sion in melanoma tissue.

GCNT3 Regulates MCAM Content at the Protein Level

We next investigated the physiological role of GCNT3
in SI00A8/A9-MCAM axis-mediated cancer motility
using siRNA in WM-266-4 cells. Higher expression of
GCNT3 was confirmed in WM-266-4 cells than in WM-
115 cells at the protein level (Fig. 4A). We also found
that MCAM was upregulated in WM-266-4 cells. Inter-
estingly, we found that the level of MCAM was sig-
nificantly decreased by the downregulation of GCNT3
using the most effective siRNA, GCNT3 siRNA I (Figs.
S6 and 4B). Similarly, downregulation of MCAM was
also associated with the suppression of GCNT3 by tal-
niflumate (Fig. 4C). Talniflumate was identified as a
novel selective inhibitor of GCNT3, which decreased the
GCNT3 expression level’. The GCNT3 siRNA and talni-
flumate had no appreciable effect on MCAM expression
at the mRNA level in WM-266-4 cells (Fig. S7), indicat-
ing that MCAM was critically regulated by GCNT3 at
the protein level. In addition, we found that both GCNT3
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siRNA-mediated GCNT3 suppression (Fig. 4D) and
talniflumate-mediated GCNT3 suppression (Fig. 4E) sig-
nificantly attenuated the basal ability of in vitro migration
of WM-266-4 cells. Under these suppressive conditions,
S100A8/A9 cellular migration never increased.

To evaluate deeply the results obtained by the GCNT3
suppression, we further studied the role of GCNT3 in cel-
lular motility by performing an overexpression experi-
ment. A total of 17 stable clones from WM-115 cells that
expressed GCNT3 at significant levels were established
beforehand (Fig. S8). Among the clones, we chose those
showing particularly high expression levels compared to
the others in a random manner and analyzed the protein
levels of intrinsic MCAM in the selected clones. Using
this approach, we found that MCAM was upregulated
commonly at protein levels (Fig. SA) but not at mRNA
levels (Fig. 5B) in selected GCNT3 clones in comparison
to the levels in parental WM-115 cells. In vitro migra-
tion (Fig. 5C) and invasion (Fig. 5D) assays of indi-
vidual clones showed clear upregulation of basal ability
as well as further enhancement in SIO0A8/A9 respon-
siveness among the GCNT3-overexpressed clones (#1
and #4). These elevations were effectively impaired by
talniflumate treatment. Collectively, the results indicate
that GCNT?3 plays a pivotal role in the maintenance of
MCAM protein at a high level, resulting in the acquisi-
tion of strong responsiveness to ST00A8/A9 that is linked
to increased cellular migration and invasion.

GCNT3 Regulates MCAM Stability

To gain an insight into the mechanisms by which
GCNT3 maintains MCAM protein at a high level, we
examined the half-life of intrinsic MCAM protein in
WM-115 cells using cycloheximide, a general inhibitor of
protein translation. Interestingly, we found that MCAM
degradation was significantly delayed in cells transfected
with GCNT?3 but not in cells transfected with green flu-
orescence protein (GFP) (Fig. 6A). The difference was
obvious at 12 and 24 h after treatment with cycloheximide.
To determine how GCNT3 was able to have a prolonged
effect on MCAM stability, we attempted to detect specific
glycosylations on MCAM, since GCNT3 is a glycosyl-
transferase that transfers GIcNAc to N-acetylgalactosamine
(GalNAc) of the core 1 acceptor structure to form the

FACING PAGE

Figure 5. Effect of aberrant overexpression of GCNT3 on S100A8/A9-induced migration and invasion. (A) Protein levels of MCAM
expression were examined by Western blotting in GCNT3-stable clones established from WM-115 cells. (B) mRNA levels of MCAM
expression were examined by Northern blotting. (—), nontransfection; GFP and GCNT3-Myc, transgene expression with the indicated
genes; parental, equal to (—); GCNT3#1, 2, 4, stable clones for GCNT3 overexpression. All specimens were prepared from WM-115
cells. Migration (C) and invasion (D) of WM-115-derived GCNT3 stable clones were assessed by the Boyden chamber method. The
cells in the top chamber were stimulated or not stimulated with the purified recombinant SI00A8/A9 (final concentration of 100 ng/
ml). Data are shown as means+SD. *p<0.05, **p<0.01 and ***p<0.001.
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Figure 6. Effect of GCNT3 on MCAM stability. (A) WM-115 cells were transiently expressed with aberrant GCNT3 or GFP as a
control for 24 h and then treated with cycloheximide (final concentration of 10 uM). Following the indicated time intervals, cells were
collected and analyzed for their intrinsic MCAM protein levels (left). The results from three independent experiments using the same
protocols for MCAM are displayed by declined curves after normalization of the MCAM bands using their matched tubulin bands
and subsequently adjusting the starting points to be at O h and 1.0 as standards (right). (B) Proposed pathway of GCNT3-mediated
glycosylation is shown schematically. (C) GIcNAc levels of MCAM protein from the prepared cell samples were determined by
immunoprecipitation and following detection with HRP-conjugated wheat germ agglutinin (WGA). WM-115 cells were transiently
transfected or not transfected (—) with the indicated plasmids, GFP and GCNT3-Myc. WM-266-4 cells were treated or not treated (—)
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core 2 branch in the B-1,6 linkage™®. In addition to the for-
mation of the core 2 structure, GCNT3 also functions to
form the core 4 structure (Fig. 6B)*. We therefore immu-
noprecipitated endogenous MCAM using a biotin-con-
jugated MCAM antibody with streptavidin beads. This
method is useful to avoid detection of the precipitated
antibody that may hide the MCAM band. With the aim
of detecting specific glycosylations within the MCAM
band, we also used 400 mM NaCl to wash out the pre-
cipitate in the hope of removing proteins that interact
with MCAM and also with the beads. WGA-HRP was
used to detect specific GlcNac modifications. As a result,
we found that the immunoprecipitated MCAM showed
higher levels of GlcNac when WM-115 cells were trans-
fected with aberrant GCNT3. Conversely, both siRNA-
mediated silencing and talniflumate-mediated inhibition
of endogenous GCNTS3 resulted in a significant reduc-
tion of GlcNac modification on the endogenous MCAM
protein. These levels of GlcNac modification positively
matched the precipitated MCAM levels (Fig. 6C).

In order to confirm this, that is, to clarify the essen-
tial role of catalytic activity of GCNT3 in glycosylation
on MCAM stability, we last tried to make a catalytic
dead GCNT?3 and assess the effect of its forced expres-
sion on the intrinsic MCAM level and on the SI00A8/
A9-mediated cellular migration. It has not been reported,
so far, to create the catalytic dead GCNT3, so we were
first in searching the catalytic domain of GCNT3 using
the protein Pfam program in the EMBL-EBI public data-
base (database http://pfam.xfam.org/protein/O95395) and
structural information written in a previous report™, result-
ing in finding of the catalytic region (133—401 aa) and the
presence of a predicted active site at 330 aa (330E). As a
reference of this information, we designed to construct
the expression vector to produce catalytic dead mutant
of GCNT3 (mutGCNT3) that stands for partial deletion
of the catalytic domain of the protein (lacking the region
from 323 aa through the C-terminal end). The deleted
region includes the predicted active amino acid, 330E
(Fig. 7A).

We then transfected the mutGCNT3 to WM-115 cells.
After immunoprecipitation of the endogenous MCAM
using a biotin-conjugated MCAM antibody with strepta-
vidin beads, we found that MCAM in the mutGCNT3-
overexpressed cells appeared at a significantly lower
level than that of the control GFP transfectant. On the
other hand, endogenous MCAM in the wtGCNT3-over-
expressed cells was present at the highest level in protein
among those in all of the temporal transfectants (Fig. 7B).
At this time, we confirmed that GIcNAc modification level
was greatly attenuated by the expression of the catalytic
dead mutGCNT3 but not wtGCNT3. A similar phenom-
enon was also observed in the WM-115-derived clone
#4, which stably expressed the wild type of GCNT3 at
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a significant level, after forced expression of the mut-
GCNT3 to the stable clone. The upregulation of endog-
enous MCAM protein in the clone #4 was mitigated by
the temporal overexpression of the foreign mutGCNT3
(Fig. 7C). Downregulation of the GlcNAc modification
in the precipitated intrinsic MCAM was also followed by
this event with mutGCNT3 overexpression. Finally, we
found that forced expression of mutGCNT3 significantly
downregulated migration activity of WM-266-4 cells
under either the presence or absence of SI00A8/A9 in
culture (Fig. 7D).

Taken as a whole, our results indicate that GCNT3
controls MCAM stability by its catalytic activity-mediated
glycosyl modification that correlates with a greater abil-
ity for cancer cell motility and invasion in response to
extracellular STO0A8/A9.

DISCUSSION

Prevention of cancer metastasis is important since the
majority of cancer deaths are related to this process. We
need a better understanding of the mechanism involved
in metastasis for the prevention of metastasis. It is well
known that some organs are more prone than others to
metastasis from certain types of cancer. This phenomenon
was first discussed by Paget as the “seed and soil” theory
over a century ago in 1889”. For example, melanomas
tend to metastasize to the lungs, prostate cancer tends to
metastasize to bones, and colon cancer tends to spread
to the liver'”**, Hiratsuka et al. reported that SI00AS8/
A9 proteins in the lung area, induced by primary tumors,
attract tumor cells from their primary region to travel to
the lung, where TLR4 expressed on these tumor cells will
function as a key sensor to catch the SI00A8/A9 signal™.
RAGE expressed on melanoma cells also has the same
function'. In addition to these receptors, we have identi-
fied novel S100A8/A9 receptors, EMMPRIN, MCAM,
ALCAM, and NPTNP, and clarified their importance in
cancer metastasis'*'*’ and inflammatory atopic dermati-
tis**. We therefore termed these important receptors “S100
soil sensor receptors” or simply as SSSRs.

Cell surface proteins including receptors are com-
monly glycosylated, and such glycosylation patterns are
usually altered during the process of cancer formation
and its subsequent progression. The altered glycosylation
often influences interaction between cells and between
cells and the extracellular environment, linking to cancer
growth, adhesion, invasion, and metastasis"™'. However,
the glycosyltransferases that regulate the glycosyl modifi-
cation of cell surface proteins are still not well understood
in cancer metastasis involved in the SI0O0A8/A9-SSSRs
axis. To our knowledge, this is the first report showing
that GCNT3, a glycosyltransferase dominantly expressed
in aggressive melanoma, increased the stability of only
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Figure 7. Effect of catalytic dead GCNT3 (mutGCNT3) on MCAM stability and on S100A8/A9-induced migration. (A) Schematic of
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siently expressed with aberrant wtGCNT3, mutGCNT3, or GFP as a control for 48 h. The expressed foreign GCNT3 (wt and mut)
was detected by myc antibody. After immunoprecipitation of the confirmed extracts, we used 400 mM NaCl to wash out the precipi-
tate in the hope of removing proteins that interact with MCAM and also with the beads. The endogenous MCAM proteins and their
GlcNAc levels from the prepared cell samples were determined by immunoprecipitation and following detection with either MCAM
antibody or HRP-conjugated WGA. (C) The wtGCNT3-overexpressed WM-115 clone #4 with stable mode was transiently transfected
with either GFP or mutGCNT3 for 48 h. The foreign expression of the GCNT3 with stable wild and temporal mutant was detected
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were carried out by a similar method as shown in (B). (D) Migration activity of WM-266-4 cells was assessed by the Boyden chamber
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recombinant ST00A8/A9 (final concentration of 100 ng/ml). The quantified results are displayed. Data are shown as means+SD.
*p<0.05, **p<0.01, and ***p<0.001.
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MCAM among the SSSRs via GlcNac modification that
leads to an enhanced responsiveness to S100A8/A9,
resulting in greater migration and invasion.

Very recently, Rao and colleagues reported interesting
data regarding GCNT3 and pancreatic cancer, and they
suggested clinical relevance between GCNT3 overex-
pression and malignancy in pancreatic cancers’. Through
an in vitro approach, they found that forced expression of
GCNT3 was associated with cancer aggressiveness and
that GCNT3-KO as well as GCNT3 inhibition with tal-
niflumate, a small compound they newly identified, sig-
nificantly reduced cell viability and spheroid formation’.
These findings corresponded well to our results for mela-
noma with the possible inclusion of other cancers, such
as skin, lung, and breast cancers and mesotheliomas, that
showed higher expression levels of GCNT3 consistently
or partially (Fig. S3). Furthermore, we found that GCNT3
also significantly increased the ability for migration and
invasion of lung immortalized BEAS-2B cells (Fig. S4).
However, the positive relevance of GCNT3 overexpres-
sion and tumor malignancy still remains controversial.
Huang et al. reported that GCNT3 was frequently down-
regulated in colorectal cancers and showed a suppressive
effect on colon cancer growth®. In addition, Gonzalez-
Vallinas et al. reported that the risk of relapse in colon
cancers patients with a low expression level of GCNT3
was significantly higher than that in patients with high
expression levels of GCNT3*. One reason for this might
be cancer type-dependent differences in intracellular
machineries involving the GCNT3 pathways that either
lead to cancer progression or regression.

Next, we focused on how GCNT3 is involved in
increasing the half-life of MCAM. We showed that
MCAM was glycosylated by GCNT3 through its cata-
lytic activity, resulting in extra attachments of GIcNAc
(Fig. 6C). It has been reported that the addition of B1-6
GIcNAc branching on integrin Bl caused a more fully
glycosylated and mature form of integrin B1. The addi-
tion of B1-6 GIcNAc branching also inhibited the B1 pro-
tein degradation in human hepatocellular carcinoma cells,
which was linked to the promotion of integrin-dependent
migration and invasion®. This process was mediated by
another glycosyltransferase, MGATS. It is reasonable to
assume that a similar process may apply to MCAM. In
regard to this, it should be pointed out that the increased
ratio of basal ability in nonmetastatic WM-115 cells was
more noticeable compared to that of its responsiveness
to STI00A8/A9 (Figs. 4D and E, and 5C and D). This
may be due to the presence of another GCNT3-mediated
pathway(s), since many proteins that are involved in can-
cer progression, including Bl as previously described,
may be affected by GCNT3 like MGATS.

In conclusion, we demonstrated in this study that
GCNT3 has a critical role in cancer migration and
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invasion through positive regulation of MCAM stability.
Further analysis of this new axis between GCNT3 and
MCAM may provide a better understanding of cancer
metastasis that is affected by ST00A8/A9. The result of
this study may also be useful for designing a promising
strategy for therapy of various cancer types.
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