Proceeding
International Symposium in Veterinary Science 2018

Strengthening the Regional Veterinary Education and Research for the Future Excellent Veterinary Graduates

February, 28th 2018
Faculty of Veterinary Medicine, Universitas Gadjah Mada

Faculty of Veterinary Medicine, Universitas Gadjah Mada
Jl. Fauna No.2, Karangmalang, Yogyakarta
www.fkh.ugm.ac.id / fkh@ugm.ac.id
PROCEEDING

INTERNATIONAL SYMPOSIUM IN VETERINARY SCIENCE

Strengthening the Regional Veterinary Education and Research for the Future Excellent Veterinary Graduates

REVIEWERS:
Prof. Hiroshi Sato (Yamaguchi University, Japan)
Prof. Byeong Chun Lee (Seoul National University, South Korea)
Prof. Koichi Sato (Yamaguchi University, Japan)
Prof. Drh. Srihadi Agungpriyono, Ph.D, PAVet(K) (Institut Pertanian Bogor)
Prof., Dr. drh., Pudji Srinto, M.Kes. (Universitas Airlangga, Surabaya)
Dr. drh. I Nengah Kerta Besung, M.Si. (Universitas Udayana, Bali)
Prof. Dr. drh. Siti Isrina Oktavia Salasia (Universitas Gadjah Mada, Yogyakarta)
Dr. drh. Rini Widayanti, MP. (Universitas Gadjah Mada, Yogyakarta)
Dr. drh. Tri Untari, M.Si. (Universitas Gadjah Mada, Yogyakarta)
Dr. drh. Michael Haryadi Wibowo, MP. (Universitas Gadjah Mada, Yogyakarta)
Dr. drh. Agustina Dwiwijayanti, MP. (Universitas Gadjah Mada, Yogyakarta)
Dr. drh. Aris Haryanto, M.Si. (Universitas Gadjah Mada, Yogyakarta)
Drh. Imron Rosyadi, MSc. (Universitas Gadjah Mada, Yogyakarta)
Endah Choiriyah, SIP., MSi. (Universitas Gadjah Mada, Yogyakarta)

Faculty of Veterinary Medicine
Universitas Gadjah Mada
2018
ABSTRACT CONTENT

Profile of “Tri-Dharma” Faculty of Veterinary Medicine Universitas Gadjah Mada
Siti Isrina Oktavia Salasia, Agung Budiyanto, Teguh Budipitojo, Rini Widayanti, Widagdo Sri Nugroho

Animal Hospital Based Education in The Faculty of Veterinary Medicine Bogor Agricultural University
Srihadi Agungprijono, Deni Noviana, Leni Maylina, Agus Setiyono, Trioso Purnawarman

Faculty of Veterinary Medicine Brawijaya University: Towards Global Competitiveness in Academic And Research
Aulanni’am, Dyah Ayu Oktaviani, Herawati, Fajar Shodiq Permata

Profile of Veterinary Medicine Faculty Wijaya Kusuma Surabaya University
Agus Sjafarjanto, Roeswandro W., Dyah Widhowati, Rondius Solfaine, Bagus Uda Palgunadi

Faculty of Veterinary Medicine, University of Nusa Cendana; A Brief Profile
Max U.E. Sanam

Improving and Collaboration on Research and Academic Activities, Faculty of Veterinary Medicine, University of Airlangga Surabaya, Indonesia
Pudji Srianto, Fedik A. Rantam, Mufasirin, Suwargo

Faculty of Veterinary Medicine Nusa Tenggara Barat University: Future Collaboration in Academic and Research
Kholik, Lalu Faesal Fajri, Candra Dwi Atma, Febrina Dian. P, Alfiana L.D.A

Study Program of Veterinary Medicine, The Faculty of Medicine, Universitas Padjadjaran, Bandung, West Java
Roostita L. Balin, Endang Yuni Setyowati, Roni Lesmana, Dwi Cipto Budinuryanto, Dwi Wahyuda Wira, Rini Widyastuti

Faculty of Veterinary Medicine, Udayana University (Future Collaboration in Academic and Research)
I Nengah Kerta Besung, I Wayan Suwardana, I Nyoman Suartha, Ida Bagus Ngurah Swacita

Applications and Challenges in Cloning Dogs
Hj Oh, Mj Kim, Ga Kim, Yk Jo, Emn Setyawan, Sh Lee, Yb Choi, Kh Ra, Da Abdillah, J Choi, H Kim, Y Fibrianto, Sk Kang, Je Ra, Sg Hong, Je Park, Oj Koo, Mk Kim, Cy Hwang, T Kim, C Ko, G Jang, Be Lee

Low Fat Diet on Cholecystokinin and Glucose Levels in Wistar Rats (Rattus norvegicus)
Amelia Hana, Claude Mona Airin, Sarmin, Pudji Astuti
The Prospects of Bali Cattle as A Source of Beef with Prime Quality such as Wagyu Beef
I Wayan Saundana, I Nengah Kerta Besung, I Nyoman Suartha, Ida Bagus Ngurah Swacita, Ni Ketut Suwiti, Reny Navatia Sinlae

Study of Various Method of Post Partum Infection Treatment on Dairy Cow
Surya Agus Prihatno', Sri Gustari, Asmarani Kusumawati, Agung Budiyanto, Dwi Sunu Detrianto

The Effect of SUPERJAMU on Feed Conversion Ratio (FCR) in Rooster Layer
Dwi Cahyo Budi Setiawan, Agustina Dwi Wijayanti, Gagak Donny Satria, Ida Fitriana, Antasiswa W. Rosetyadewi, Muhammad Tisnanto Herdiawan

The Chitosan/NTC8685-eGFP Nanoparticle as an Antibiotic-Free DNA Vaccine
Asmarani Kusumawati, Januar Ishak NG, Lalu Unsun Nidhal, Ronny Martien, Tri Untari

Ethanolic Extract Ocimum sanctum Linn. Prevent Neuronal Apoptosis on The In Vitro Model Neurodegeneration
Puspa Hening, Made Bagus Auriva, Aris Haryanto, Dwi Liliek Kusindarta, Hevi Wihadmadyatami

Histological Features of Liver Rats (Rattus novergicus albinus) that Injected Paraquat Dichloride Intrapetitoneal Twice A Week for Three Weeks
Tri Wahyu Pangestiningsih, Indah Putri Lestari, Sitarina Widyarini

Expression Of DMRT1 In Quail Embryos (Coturnix coturnix japonica)
Asmarani Kusumawati, Ninik Istiyawati, Alice Aldora, Surya Agus Prihatno, Sri Gustari, Agung Budiyanto

The Expression and Distribution of Neuropeptide Y (NPY) on The Hipocampus (CA3) Area of The Fruit Bat (Roesettsus amplexicaudatus)
Jason Gan Jhengseng, Ulayatul Kustiati, Ananda D. Anindita, Hevi Wihadmadyatami, Dwi Liliek Kusindarta

The Expression and Distribution of Neuropeptide Y (NPY) on The Olfactory Bulb of Fruit Bat (Roesettsus amplexicaudatus)
Ulayatul Kustiati, Jason Gan Jhengseng, Ananda D. Anindita, Hevi Wihadmadyatami, Dwi Liliek Kusindarta

The Expression and Distribution of Neuropeptide Y (NPY) on Dentate Gyrus of Fruit Bat (Roesettsus amplexicaudatus)
Ananda D. Anindita, Ulayatul Kustiati, Jason Gan Jhengseng, Hevi Wihadmadyatami, Dwi Liliek Kusindarta

Anatomy and Histology of Kidney and Urinary Bladder of Timorese Fruit Bats (Pieropus vampyrus)
Filphin A. Amalo, Yulfia N. Selan Antin Y.N Widi, Annania K. G. Medja

Contralateral Compensatory Study of Kidney of Sprague Dawley Rat Post
THE PROSPECTS OF BALI CATTLE AS A SOURCE OF BEEF WITH PRIME QUALITY SUCH AS WAGYU BEEF

I Wayan Suwardana*, I Nengah Kerta Besung, I Nyoman Suartha, Ida Bagus Ngurah Swacita, Ni Ketut Suwiti, Reny Navtalia Sinlae

Faculty of Veterinary Medicine, Udayana University, Jl. PB. Sudirman, Denpasar Bali
e-mail: wayan_suwardana@umud.ac.id*

Abstract

Bali as one of the tourist destination in Indonesia is not only required to provide interesting sights but also demanded to provide the best service including in the provision of food for the consumption of tourists. Bali cattle as germ plasma from Bali are required to play an important role to meet the beef standards, and so far the need for beef with excellent quality is still imported from Japan and Australia in the form of wagyu beef. This study attempts to reveal the comparison of beef quality between bali beef and wagyu especially in terms of their protein and amino acids. The results showed protein profile of bali beef and wagyu beef has slightly different. Based on SDS-PAGE analysis, the protein of bali beef showed 15 bands and 14 bands for Wagyu cattle, respectively. The concentration of amino acids also different. Essential amino acids of Bali cattle 26.80% were lower than wagyu beef 30.18%. This result was opposite with non-essential amino acids i.e. 29.84% for Bali beef compare with 28.92% for wagyu beef.

Keywords: Bali cattle, beef, quality, proteine

Introduction

Bali cattle are known as cattle pioneer as one of the local cattle with its genetic characteristic that can live by utilizing forage that are less nutritious, not selective for the food and have a higher digestibility against fiber foods [1-2]. According to the study of Arka which found the nutrition status has significant effect to the quality of bali cattle including color, marbling, chemical composition (moisture, protein, fat, and ash). Furthermore, marbling of bali cattle was found more affected by high energy ration and castration status [3]. Until now, bali cattle has not yet considered having best quality for tourist consumption. On the other hands, Bali as one of tourist destination in Indonesia is need to produce of beef with prime quality for tourist who come to Bali. In order to fulfill of that needed, the tourist management and goverments of Bali have been import wagyu beef from the other country like Japan and Australian. Wagyu that means Japanese produced beef cattle contains a higher percentage of omega-3 and omega-6 fatty acids than typical beef [4]. Some studies have been conducted by several researchers to promote Bali cattle as a source of beef with prime quality. Based on background above, the study about characteristic of protein and amino acids of Bali beef and Wagyu beef as a early step to promote of Bali cattle as a source of beef with prime quality is interesting to be presented.

Objective

The objectives of the study were to determine the characteristic of protein and amino acids both Bali beef and Wagyu beef and to evaluate the prospects of Bali cattle as source of beef in order to fulfill the beef with prime quality for tourist who come to Bali.
Methods

Samples
Samples of study were Bali beef and Wagyu beef that were taken from supplier in Bali.

Protein analysis
Protein characteristic of beef both Bali cattle and Wagyu beef was analyzed by using SDS-PAGE (Sodium Dodecyl Sulphate Polyacrylamide Gel Electrophoresis) method according to standard procedure [5] and amino acid was analyzed by using AOAC (Association of Official Analytical Chemist) procedure [6]

Data analysis
Data of study were analyzed descriptively

Results

Protein profile both Bali beef and Wagyu beef showed characteristic as bellow (Fig.1)

![Protein profile image](image)

Fig.1 Protein profile of beef originated from Bali cattle and Wagyu by using SDS-PAGE analysis. (M: marker; B3, B7, B14: Bali beef with the 3rd, 4th, and 14th of preservation, respectively; W3, W7, W14: Wagyu beef with the 3rd, 4th, and 14th of preservation, respectively; B0: Bali beef control; W0: Wagyu beef control).

According to the data above shows the amount of beef protein from bali and wagyu does not show the change of the number of bands until the 3rd day of preservation i.e 15 bands for Bali beef and 14 bands for Wagyu beef, respectively. The number of protein bands appears to shrink on the 14th day of observation. Bali beef shows 13 bands and Wagyu beef 12 bands. These results indicate the presence of amount of protein has been denaturation in both Bali beef and Wagyu beef. Further analysis of the amino acids of Bali beef and Wagyu beef compounds as presented in Table 1 and Table 2.
Table 1. Concentration of essential amino acids between Bali beef and wagyu beef on different time of observation at 4°C.

Essential amino acids	Bali beef (%)					Wagyu beef (%)				
	Preservation (day)	0	3	7	14	0	3	7	14	0
Histidine	6.57	6.00	4.68	1.06	5.67	5.67	4.67	1.10	0.90	0.69
Threonine	2.17	1.76	1.57	1.57	2.31	2.31	1.57	1.09	1.09	1.09
Arginine	2.57	1.95	1.61	1.26	2.67	2.67	2.50	1.25	1.25	1.25
Methionine	3.24	1.52	1.17	0.76	3.67	3.67	2.35	1.50	1.50	1.50
Valine	3.08	1.23	1.09	0.63	1.22	1.22	0.69	0.40	0.40	0.40
Phenylalanine	2.72	2.38	1.69	0.89	4.15	4.15	2.21	2.09	2.09	2.09
Isoleucine	2.88	2.09	1.37	1.08	2.92	2.92	1.19	1.02	1.02	1.02
Leucine	1.81	1.54	1.50	0.75	3.66	3.66	1.70	1.58	1.58	1.58
Lysine	3.57	3.53	2.44	1.90	3.91	3.91	3.52	3.40	3.40	3.40
Total	28.60	22.00	17.12	9.89	30.18	30.18	20.38	13.43	0.90	0.69

Table 2. Concentration of non-essential amino acids between Bali beef and wagyu beef on different time of observation at 4°C.

Non-essential amino acids	Bali beef (%)					Wagyu beef (%)				
	Preservation (day)	0	3	7	14	0	3	7	14	0
Aspartic acids	4.01	2.88	2.84	2.13	4.74	4.74	2.39	2.33	0.90	0.69
Glutamic acids	9.68	5.70	5.35	2.98	5.84	5.84	5.54	3.55	0.90	0.69
Serine	9.91	1.82	1.18	1.07	11.16	11.16	1.58	1.11	0.90	0.69
Glycine	0.73	0.73	0.38	0.34	0.81	0.81	0.57	0.57	0.57	0.57
Alanine	2.10	1.41	1.26	0.87	1.70	1.70	1.50	0.55	0.55	0.55
Tyrosine	3.42	2.41	1.38	1.00	4.68	4.68	2.02	1.53	0.90	0.69
Total	29.84	14.95	12.39	8.38	28.92	28.92	13.60	9.31	0.90	0.69

Data in Table 1 shows concentration of essential amino acids of Bali beef is lower than wagyu beef and those concentrations were decrease while preservation on 4°C. The protein concentration of Bali beef is decrease from 28.60% on day 0 to 9.89% on day 14. Similarity with Bali beef, essential amino acids concentrations of wagyu beef also decrease from 30.18% on day 0 to 13.43% on day 14. Different with data in Table 1, the data in Table 2 shows non-essential amino acids concentration of Bali beef was higher than wagyu beef. In line with preservation time, the protein also decrease while preservation at 4°C.

Some of the essential amino acids on Bali beef and wagyu beef i.e Histidine, Arginine, Methionine, Phenylalanine, and Isoleucine showed significant decrease. Furthermore, non-essential amino acids also showed decrease i.e. amino acids Glycine, Alanine, and Tyrosine. The concentration of amino acid Threonin, Valin, Leusin, Lisin, Acid Aspartate, Glutamic Acid and Serine was relatively unchanged during preservation. The decrease of amino acids concentration during preservation is caused by the presence of decay bacteria that are still life on preservation. The results of this study were supported by some studies which found the protein decreases during preservation was resulted by denaturation, and also by degradation of molecular complex into simple molecule. Furthermore, Koswara (1995) in Toldra [7] reveals that such change was caused by enzyme activity that degrade proteins. Ekop [8] also stated the decline of amino acid was significantly influence by the quality of foodstuffs.
Conclusion

The result of study showed protein profile of bali beef and wagyu beef has slightly different. Based on SDS-PAGE analysis, bali beef showed 15 bands and 14 bands for Wagyu beef, respectively. The concentration of amino acids also different. Essential amino acids of bali beef 26.80% were lower than wagyu beef 30.18%, opposite with non-essential amino acids as much as 29.84% for bali beef compare with 28.92% for wagyu beef.

References

The collaboration between Indonesia and Japanese Veterinary School

CERTIFICATE OF ATTENDANCE

present:

to

for having attended the

International Symposium

for the Future Excellent Veterinary Graduates

Poster Presenter

held at:

Facility of Veterinary Medicine, Universitas Gadjah Mada, Yogyakarta, Indonesia

February 28th, 2018

Prof. Dr. Ir. Dwi Indra Oktio, Indonesia

Prof. Dr. Ir. Dwi Indra Oktio, Indonesia