Welcome to Malaysian Journal of Microbiology

Submit your manuscript

Menu
Home
Editorial Board
Guideline for Authors
Contact Us

Home

The Malaysian Journal of Microbiology (MJM) is published under the auspices of the Malaysian Society for Microbiology. It serves as a forum for scientific communication among scientists and academicians who deal with microbes and microbial products. The journal publishes research articles, short communications and review articles on various novel aspects of microbiology. Since 2011, the journal has been indexed in ESCI and the number of publications has increased to four times a year. The medium of communication is English.

The Malaysian Journal of Microbiology (MJM) is indexed in ESCI starting from October 2011. This is an open access journal which means that all content is freely available without charge to the user or his/her institution. Users are allowed to read, download, copy, distribute, print, search or link to the full text of the articles in this journal without asking permission from the publisher or the author. This is in accordance with the Budapest Open Access Initiative (BOAI) definition of open access.

Aims and Scope

The Malaysian Journal of Microbiology (MJM) publishes high quality microbiology research related to the topics. These include infectious diseases and antimicrobials. In addition, the journal also publishes research works on the application of microbes for the betterment of human society and the environment. The journal welcomes papers on isolation, identification, characterization and application of microbes and microbial products.

The MJM is published under the auspices of the Malaysian Society for Microbiology. It serves as a forum for scientific communication among scientists and academicians who deal with microbes and microbial products.

The journal publishes research articles, short communications and review articles on various novel aspects of microbiology, which includes topics related to medical, pharmaceutical, food, agricultural, industrial, plant pathology, dermatology, microbial genetics, environment, soil, water and biodegradation. The journal also emphasizes the importance of papers by microbes in our daily life. From 2011, the journal is published four times a year. The medium of communication is English.

MJM is now in

[Image]
Elhadi, N., Nishibuchi, M.

[Abstract] [Download Full Text]

Antagonistic activity of *Streptomyces thermocarboxydyus* to
Fusarium oxysporum: The cause of leaf rot disease on
Aloe Vera (*Aloe barbadensis Mill.*) in Bali, Indonesia

Antagonistic activity of *Streptomyces thermocarboxydyus* to
Fusarium oxysporum: The cause of leaf rot disease on
Aloe Vera (*Aloe barbadensis Mill.*) in Bali, Indonesia

Kawuri, R., Suprapta, D. N., Nitta, Y.

[Abstract] [Download Full Text]

Prickly pear cactus as a raw material for lactic acid
production by *Lactococcus lactis subsp. lactis*

Tamine, M., Nancib, A., Nancib, N., Boudrant, J.

[Abstract] [Download Full Text]

Abiotic stresses induce total phenolic, total flavonoid and
antioxidant properties in Malaysian indigenous microalgae
and cyanobacterium

Azim, N. H., Subki, A., Balia Yusof, Z. N.
Antagonistic activity of *Streptomyces thermocarboxydus* to *Fusarium oxysporum*:
The cause of leaf rot disease on Aloe Vera (*Aloe barbadensis* Mill.) in Bali, Indonesia

Retno Kawuri¹*, Dewa Ngarah Suprapta² and Youji Nitta³

¹Biology Department Faculty of Mathemetic and Natural Sciences, Udayana University, Bali 80361, Indonesia.
²Faculty of Agriculture, Udayana University, Bali 80361, Indonesia.
³The Collage of Agriculture, Ibaraki University, Ami, Ibaraki 300-0393, Japan.

Email: microbiologylaboratory@yahoo.com

Received 4 May 2017; Received in revised form 21 May 2017; Accepted 29 May 2017

ABSTRACT

Aims: Aloe vera (*Aloe barbadensis* Miller) has been cultured in Bali, Indonesia since 2006. Its cultivation area is 170 ha including 5 regencies i.e. Buleleng, Karangasem, Bangli, Badung and Gianyar. This study was conducted to isolate and identify the *Streptomyces* sp. that potentially can be used to inhibit the growth of *F. oxysporum* and control the leaf rot disease on aloe vera and to study the structural responses of *F. oxysporum* to the treatment of *Streptomyces* culture filtrate.

Methodology and results: Samples were collected from Serokadan, Kerobokan, and Saba, Bali, Indonesia. The isolate of *Streptomyces* sp. that resulted in the highest antifungal activity was further observed on its morphological and ultrastructure characteristics using SEM and TEM. Identification was done by using 16S rRNA sequencing techniques. A greenhouse experiment was conducted to evaluate the effectiveness of the filtrate of *Streptomyces* sp. to control the leaf rot disease on aloe vera with and to study the structural responses of *F. oxysporum* to the treatment of *Streptomyces* culture filtrate. The *Streptomyces GYRRK* was identified to be *S. thermocarboxydus* and the filtrate inhibited the growth of *F. oxysporum* by damaging cell wall and plasma membrane of macro conidia cell, micro conidia, and hypha. Treatment with the filtrate of *S. thermocarboxydus* with four sprays (one spray equal to 0.5 mL) over inoculated leaves of aloe vera reduced the leaf rot disease by 68%.

Conclusion, significance and impact of study: This result suggests that filtrate of *S. thermocarboxydus* potentially can be used as an alternative control agent against leaf rot disease on aloe vera in Bali.

Keywords: Aloe vera, *Fusarium oxysporum*, leaf rot disease, *Streptomyces thermocarboxydus*.

INTRODUCTION

Aloe vera (*Aloe barbadensis*) has been planted intensively in Bali, Indonesia since 2006. The cultivation area is 170 ha including five regencies i.e. Buleleng, Karangasem, Bangli, Gianyar and Badung which are cultivated by 139 farmers. This plant originally came from Mexico and introduced to Bali, Indonesia in 2006. A leaf rot disease was found in 2010 on several areas of aloe vera plantation in Bali. The symptom of the disease was observed on the leaf, where the leaf becomes rotten and dry with brown color crescent type. The causal pathogen of the disease has been identified as *Fusarium oxysporum* based on morphological characteristics and analysis of 18S rDNA (Kawuri et al., 2012).

Synthetic fungicides are currently utilized as disease control agent for diseases caused by pathogenic fungi. These synthetic fungicides may cause a number of problems such as environmental contamination and health problems. Moreover, synthetic fungicide can cause pathogen resistance and affect the non target organisms (Brimer and Boland, 2003). Based on this reason, an alternative safe way to control fungal diseases on plants must be found. Microorganisms can be used as biocontrol agent for plant disease, as they are more friendly to the environment and safe to the non target microorganism. Prapagdee et al. (2008) reported that many genus of *Streptomyces* have been used as anti fungal agents to control several pathogenic fungi in plants. The capability of *Streptomyces* in inhibiting growth of pathogenic fungi is due to its capability to produce both antifungal agent and extracellular hydrolytic enzymes those are able to degrade fungal cell wall.
This study was conducted to isolate and identify the Streptomyces sp. that potentially can be used to inhibit the growth of F. oxysporum and control the leaf rot disease on aloe vera as well as to study the structural responses of F. oxysporum to the treatment of Streptomyces culture filtrate.

MATERIALS AND METHODS

Isolation and identification of Streptomyces

Streptomyces was isolated from the soil around aloe vera plants which did not show any disease symptom. Samples were collected from three locations in Bali i.e. Serokadan Village, Bangli Regency; Kerobokan Village, Badung Regency and Saba Village, Gianyar Regency. Macroscopic (morphology colony), microscopic (Gram staining, Ziehl Neelsen staining) and biochemical tests (catalase test) were observed based on the determination key book of Guide to the Classification and Identification of the Actinomycetes and their antibiotics written by Lechevalier and Waksman (1973). The Streptomyces sp. isolates obtained was examined on its inhibition capability over F. oxysporum that causing leaf rot disease on aloe vera plant using dual culture method. The most potential Streptomyces sp. in inhibiting F. oxysporum was further observed on its morphological characteristics using scanning electron microscope (SEM), while spore and hypha ultrastructure of Streptomyces sp. was examined using transmission electron microscope (TEM). Molecular identification of Streptomyces sp. was done based on 16S rRNA analysis with specific primer, i.e. 20f (5'-GAGTTTGATCCTGGCTCAG) and 1500r (5'-GTTACCTTGTTCGACCTT) (Nishizawa et al., 2010).

Preparation of culture filtrate

Filtrate preparation of Streptomyces sp. was conducted by growing Streptomyces sp. on Yeast Extract Malt Extract (ISP2) medium for 14 days on incubator shaker at temperature of 28±2°C at 125 rpm. Filtrate from culture was then collected, followed by centrifugation at 11,000 rpm for 15 min and was filtered using filter paper 0.45 µm. Filtrate partition was done by pouring the filtrate into a 1 L separation bottle and then n-butane solvent was added at ratio of 1:1 (v/v), followed by evaporation to separate n-butane with filtrate using vacuum rotary evaporator (Buchan Motivator R-210, Japan). This filtrate was used for antifungal activity test against F. oxysporum. Minimum inhibitory concentration (MIC) of this filtrate was determined on PDA medium on Petri dish using diffusion well method. Two diffusion wells (5 mm in diameter) were made on each Petri dish and filled with 20 L filtrate each. The filtrate concentrations (% v/v) tested on this test were 100, 90, 80, 70, 60, 50, 40, 30, 20, 10 and control (sterile distilled water).

Ultra structural response of F. oxysporum

Ultra structural response of F. oxysporum against treatment of filtrate of Streptomyces sp. was examined under scanning electron microscope (SEM) and transmission electron microscope (TEM). A 20 L filtrate of Streptomyces sp. at concentration 100% was into Petri dish and then added by melted PDA medium and shaken horizontally to mix the filtrate evenly with PDA. A mycelia plug taken from the edge of F. oxysporum colony (5 mm diam.) was put in the center of Petri dish and then incubated in the dark at 25 °C for 3 days (Picman et al., 1990). Fungal colony on the colony edge was cut 3 mm and 1 mm in size, followed by the sample preparation process for SEM (JSM-6701F, JEOL) and TEM (JEM-2100, JEOL) analyses (Hall, 1978; Hayat, 1981).

Greenhouse experiment

A greenhouse experiment was conducted to evaluate the effectiveness of the filtrate of Streptomyces sp. to control the leaf rot disease on aloe vera. The seedlings of aloe vera (2.5 mos old) were planted in pots filled with cultural medium (fertile soil and compost, 3:1) and adapted in a greenhouse for two weeks. These aloe vera plants were then inoculated with spores suspension of F. oxysporum in sterile water with 1% Tween-80. Prior to inoculation, three leaves of each plant were artificially injured with sterile needle as inoculation point. One inoculation point was made per leaf. Inoculation was done by spraying 0.5 mL spores suspension (10⁴ spores /mL) of F. oxysporum over inoculation point. The next day, a 0.5 mL Streptomyces sp. filtrate was sprayed on leaves that already infected by F. oxysporum. The sprays were conducted 1 time, 2 times, 3 times and 4 times for STR1, STR2, STR3, STR4 treatment respectively. Six treatments viz. treatment with sterile distilled water (control), treatment with 2% Mancoseb (w/v) a synthetic fungicide (MnC), treatment with one spray of Streptomyces sp. filtrate (STR1), treatment with two sprays of filtrate (STR2), treatment with three sprays of filtrate (STR3), and treatment with four sprays of filtrate (STR4). Each treatment were replicated four times, thus there were 24 experimental units of 10 aloe vera plants per unit. Treatments allocation was done based on randomized block design. Disease incidence was determined based on the percentage of inoculation points that developed into lesion six week after inoculation. All data were subjected to the analysis of variance (ANOVA) followed by Duncan’s Multiple Range Test (SPSS software 17, 2009).

RESULTS

Characteristic of Streptomyces sp. isolate GYRRK

There were 24 isolates of Streptomyces sp. obtained in this study, and among of them 14 isolates showed antagonistic activity against F. oxysporum. Isolate GYRRK showed the highest inhibitory activity (93.4%). Based on
PCR analysis the size of the 16S rRNA of isolate GYRRK was 1,480 bp and indicated in Figure 1.

Comparison of 16S rRNA homologous gene level of *Streptomyces* sp. isolate GYRRK with a number of sequences at GenBank using BLAST program showed top 10 of results of isolate GYRRK similarity compared to 16S rRNA sequence that are available at Gene bank / NCBI (National Center for Biotechnology Information). It was found that GYRRK isolate demonstrated similarity level of 96% with *Streptomyces thermocarboxydus* strain Hd 16S ribosomal RNA gene with total score of 2137.

Morphological characteristics observed by SEM indicated that *S. thermocarboxydus* had curvy aerial hypha and wavy structure with spore on the tip of hypha (Figure 2A). Conidia had rounded shape with uneven surface with chain shape or in cluster (Figure 2B). Observation by TEM showed that conidia’s cell ultrastructure consisted of cell wall, cytoplasmic membrane, thick cortex and nucleus without membrane (prokaryot), as shown in Figure 2C. Ultrastructure hypha of *S. thermocarboxydus* consist of ribosome, mesosome and nuclear substance (Figure 2D).

Antifungal activity of *S. thermocarboxydus*

The filtrate of *S. thermocarboxydus* culture showed a strong antifungal activity against *F. oxysporum* on PDA with the diameter of inhibition zone by 16.53 mm. Minimum inhibitory concentration of this filtrate against *F. oxysporum* was 60% (v/v). This result showed that filtrate of *S. thermocarboxydus* effectively suppressed the growth of *F. oxysporum*. Morphological macroconidia of *F. oxysporum* on control showed crescent shape (Figure 2E). Observation on macroconidia under SEM and TEM showed that treatment with the filtrate of *S. thermocarboxydus* resulted in the damage of cell wall and cytoplasm membrane of macro conidia as shown in Figures 2F and 2G. Observation under SEM showed that macroconidia has rough surface (Figure 2K). However after treatment with filtrate showed macroconidia become broken (Figure 2L).

The surface of hypha of *F. oxysporum* on control was not curvy (Figure 2H), while the hypha treated with filtrate of *S. thermocarboxydus* was broken, with curvy surface as shown in Figure 2I. Observation under TEM showed that the cell wall was perforated and plasma membrane, organelle under pressure and wider vacoule causing cell became lysis and died (Figure 2J).

Effective ness of filtrate of *S. thermocarboxydus* to to control leaf rot disease

Treatment with the filtrate of *S. thermocarboxydus* significantly (p<0.05) suppressed the incidence of leaf rot disease on aloe vera. The disease incidence of control was 86.1% that significantly higher than those of treatments MnC (synthetic fungicide): 19.4%, STR3 (three sprays of filtrate): 38.9%, and STR4 (four sprays of filtrate): 27.8% as presented in Table 1. The suppressive activity of these three treatments were 77%, 55% and 68% for MnC, STR3 and STR4, respectively.

Table 1: In vivo examination of *S. thermocarboxydus* culture filtrate over *F. oxysporum* isolate on Aloe vera plant (*A. barbadensis* Mill.).

<table>
<thead>
<tr>
<th>No</th>
<th>Treatment</th>
<th>Disease incidence (%)*</th>
<th>Suppressive activity (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Control</td>
<td>86.1 a</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>MnC</td>
<td>19.4 b</td>
<td>77</td>
</tr>
<tr>
<td>3</td>
<td>STR1</td>
<td>68.9 ab</td>
<td>26</td>
</tr>
<tr>
<td>4</td>
<td>STR2</td>
<td>61.1 ab</td>
<td>29</td>
</tr>
<tr>
<td>5</td>
<td>STR3</td>
<td>38.9 b</td>
<td>55</td>
</tr>
<tr>
<td>6</td>
<td>STR4</td>
<td>27.8 b</td>
<td>68</td>
</tr>
</tbody>
</table>

Means followed by the same letters are not significantly different according to the Duncan’s multiple range test at 5% level.

DISCUSSION

Streptomyces sp. isolate GYRRK was found to be a potential antagonist against *F. oxysporum* the cause of leaf rot disease on aloe vera (*A. barbadensis*) in Bali. The filtrate of *Streptomyces* sp. showed a strong antifungal activity against *F. oxysporum* on PDA medium with MIC at concentration of 60%. This result suggested that *Streptomyces* sp. isolate GYRRK released substances into cultural medium and inhibited the growth of *F. oxysporum*. This phenomenon has been known as antibiosis as described by Agrios (2005) that antibiosis is an antagonistic activity resulted from the capability of a microbe to produce secondary metabolites such as antibiotics, bacteriocyn, enzymes and volatile compounds.
Figure 2: Scanning and transmission electron micrographs of *S. thermocarboxydus* and *F. oxysporum*. A: *S. thermocarboxydus* aerial hypha and conidia (SEM); B: Conidia’s surface (SEM); C: Conidia *S. thermocarboxydus* (TEM. C: cortek, BI: nuclear substance, D: cell membrane, SM: cytoplasmic membrane); D: Ultrastucture hypha of *S. thermocarboxydus* (TEM. R: ribosome, M: mesosome, BI: nuclear substance); E: Macroconidia of *F. oxysporum* without treatment (SEM); F: Flatted macroconidia of *F. oxysporum* with filtrate treatment (arrow) (SEM); G: Damaged macroconidia’s cytoplasmic membrane of *F. oxysporum* with filtrate treatment (arrow) (TEM); H: Hypha of *F. oxysporum* without filtrate treatment (arrow)(SEM); I: Damaged hypha of *F. oxysporum* with filtrate treatment (arrow) (SEM); J: Damaged hypha’s plasma membrane of *F. oxysporum* with filtrate treatment (TEM. PM: plasma membrane); K: Microconidia of *F. oxysporum* without treatment (SEM), L: Broken microconidia of *F. oxysporum* with filtrate treatment (arrow)(SEM).
This is in agreement with Getha and Vilkinewary (2002) that growth inhibition could be caused by the production of enzymes and antifungal that are able to degrade hypha and cell wall of Fusarium sp. Narayana et al. (2007) reported that Streptomyces sp. has the capability to produce antibiotics with wide variation of chemical structures. Streptomyces sp. ANU 6277 produce 8-hydroxyquinoline that posses antifungal and antibacterial properties. Khanna et al. (2009) reported that MIC of Streptomyces spp. filtrate extracted with n-butanol against Alternaria brassicola, A. porri, Colletotrichum gloeosporioides, Fusarium oxysporum, Pinicillium digitatum and Sclerotium rolfsii, were at a range of 0.781-6.250 mg/mL. Study by Narayana et al. (2007) revealed that MIC from bioactive components (AFI –AF4) produced by Streptomyces sp. ANU 6277 against Aspergillus flavus, A. niger, Fusarium oxysporum, F. udum and Pinicillium citrinum were at a range of 2-10 µg/mL (AF3), 10–50 µg/mL (AF1), 100-1000 µg/mL (AF2) and 250-1000 µg/mL (AF4) respectively.

Streptomyces sp. isolate GYRRK has the closest genetic relationship with Streptomyces thermocarboxydus strain Hd and thus, it is identified as Streptomyces thermocarboxydus. The morphology of S. thermocarboxydus observed under SEM showed a curvy aerial hypha and wavy structure with spore on the tip of hypha. The filtrate of this isolate strongly inhibited the growth of F. oxysporum. Based on the observation under SEM and TEM showed that this filtrate caused the damage of cell wall, plasma membrane of hypha, macro conidia, and micro conidia. These damage may responsible for the growth inhibition of F. oxysporum.

Similar study on Fusarium was done by Liyong et al. (2009) who found that chitosan treatment at concentration 0.5% effectively inhibited the growth of Fusarium sulphureum, the cause of dry rot disease on potato roots. Observation under SEM showed that the morphology of hypha was changed and become tangled, swollen and branching. TEM results showed that the cytoplasm distribution was not normal with thickened hypha membrane, formation of new septa on broken hypha, but micro conidia and macro conidia were not damaged. Dominguez et al. (2011) showed an ultra structure of hypha of Alternaria alternata treated with chitosan, and revealed that the cell membrane and conidia were damaged.

In this study we proved that the application of filtrate of S. thermocarboxydus isolate GYRRK, with three or four sprays significantly (p<0.05) suppressed the incidence of leaf rot disease on A. barbadensis grown under green house condition. These treatments were able to reduce the leaf rot disease incidence by 55 and 68% when compared to control. Study by Gopala et al. (2011) revealed that five isolates of actinomycetes viz. CAI-24, CAI 221, CAI129,KA132 and KA190 showed an antifungal activity against F. oxysporum, the cause of Fusarium wilt on broad bean. Likewise, these isolates suppressed the disease incidence by 45-76% in the glass house experiment. Diamond and Cooke (2003) reported the use of filtrate culture of Phoma betae was able to inhibit white spot disease on wheat caused by Fusarium culmorum by 60% compared to control after 25 days.

The filtrate of S. thermocarboxydus obviously suppressed the incidence of leaf rot disease on A. barbadensis under green house condition. The suppressive activity of this filtrate was comparable to mancozeb, a synthetic fungicide that commonly used for fungal disease control. This result suggested that filtrate of S. thermocarboxydus is a potential alternative safe agent that can be used to control the leaf rot disease on A. barbadensis instead of using synthetic fungicide.

ACKNOWLEDGEMENT

A high appreciation goes to the Directorate General of Higher Education, Ministry Education and Culture of the Republic of Indonesia for partly supported this study under Sandwich-like program at the Collage of Agriculture, Ibaraki University, Japan.

REFERENCES

