Fw: [TELKOMNIKA] #5993: Foreign Tourist Arrivals Forecasting Using Recurrent Neural Network Backpropagation Through Time

1 message

Oger Vihikan <ogervihikan@outlook.com>
To: "ikgdarmaputra@unud.ac.id" <ikgdarmaputra@unud.ac.id>
Sun, Oct 1, 2017 at 12:27 PM

From: Tole Sutikno <tole@journal.uad.ac.id>
Sent: Sunday, August 20, 2017 11:20 PM
To: Oger Vihikan
Subject: [TELKOMNIKA] #5993: Foreign Tourist Arrivals Forecasting Using Recurrent Neural Network Backpropagation Through Time

Dear Mr. Wayan Oger Vihikan,

It is my great pleasure to inform you that your paper has been ACCEPTED and will be published on the TELKOMNIKA Telecommunication Computing Electronics and Control (ISSN 1693-6930, SCOPUS indexed journal). Congratulations!

In order to cover part of the publication cost, each accepted paper is charged: IDR 2,500,000.-

This charge is for the first 8 pages, and if any published manuscript over 8 pages will incur extra charges IDR 500,000.- per page

The payment should be made by bank transfer (T/T):

Bank Account name (please be exact)/Beneficiary: ANTON YUDHANA
Bank Name: Bank Central Asia (BCA),
Branch Office: KCP Kusumanegara Yogyakarta
City: Yogyakarta
Country: Indonesia
Bank Account # : 8465023984

Your paper will be scheduled for forthcoming issue. Please pay the publication fee and submit your payment receipt as soon as possible (within 3 weeks). If you need more time, please send a request to telkmonika@ee.uad.ac.id cc: tole@journal.uad.ac.id:. We can give you 5 weeks at the most.

I look forward for your response

Sincerely yours,
Tole Sutikno
Editor-in-Chief, TELKOMNIKA
BUKTI SETORAN

Validasi: 7725006T 513 184652108102035 1363 8465023984 ANTON YUDHANA ST
IDR 2,500,000.00 KENA BIAYA ADM

Jenis Rekening: □ Tahapan □ Tapres □ Giro

No. Rekening/Customer: 546302 39 54
Nama Pemilik Rekening:
Berita/Keterangan:

Nama Penyetor:
Alamat Penyetor:

Informasi Penyetor: □ Nasabah, No. Rekening □ Non Nasabah, No. Tanda Pengenal

Khusus Setoran > Rp 100,000,000,- (ekuivalen)

<table>
<thead>
<tr>
<th>Sumber Dana</th>
<th>Tujuan Transaksi</th>
</tr>
</thead>
</table>

Mata Uang: □ BCA Dollar □ Kartu Kredit BCA □ Lainnya □ Rupiah □ Valas (...........)

Tunai/No. Warkat | Jumlah Valas | Kurs | Jumlah Rupiah
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>TOTAL</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Diisi oleh Bank
Biaya
Komisi
Jumlah yang dikredit

Terbilang: [Signature]

KETENTUAN:
1. Setoran sah setelah divalidasi atau ditandatangani Teller.
2. Setoran akan dibukukan setelah dana efektif diterima dengan baik.
3. Bagi Non Nasabah yang melakukan setoran dana > Rp 100.000.000,- (ekuivalen) wajib menyerahkan fotokopi tanda pengenal dan mengisi formulir data nasabah

Teller
Penyetor
List of Accepted papers dapat dilihat pada alamat:
http://journal.uad.ac.id/index.php/TELKOMNIKA/issue/view/425

Table of Contents

The Correlation of Statistical Image and Partial Discharge Pulse Count of LDPE-NR Composite

Aulia Aulia, Zulkarnain Abdul Malek, Yanuar Zulardiantsyah Arief, Eka Putra Waldi

Neural Network-Based Stabilizer for the Improvement of Power System Dynamic Performance

Rudy Gianto, Kho Hie Khwee

Thermal Condition and Losses in Ultra-High-Speed Generators

Flur Ismagilov, Viacheslav Vavilov, Ruslan Karimov, Denis Gusakov

Noise Analysis in VLC Optical Link based Discrete OP-AMP Trans-impedance Amplifier (TIA)

Syifaul Fuada, Angga Pratama Putra, Trio Adiono, Yulian Aska

Weighted Least Squared Approach to Fault Detection and Isolation for GPS Integrity Monitoring

Ershen Wang, Fuxia Yang, Pingping Qu, Tao Pang, Xiaoyu Lan

An Improved Repetitive Control for Circulating Current Restraining in MMC-MTDC

Yahui Wang, Yijia Cao, Yong Li, Chang Li

Application Profiling and Mapping on NoC-based MPSoC Emulation Platform on Reconfigurable Logic

Jia Wei Tang, Yuan Wen Hau, Nasir Shaikh-Husin, Muhammad Nadzir Marsono

The Performance of an Integrated Transformer in a DC/DC Converter

Adelhadi Namoune, Azzedine Hamid, Rachid Taleb
Packet Loss Rate Differentiation in slotted Optical Packet Switching OCDM/WDM

Omar Najah, Kamaruzzaman Seman, Khairi Abdulrahim

94 GHz Millimeter Wave Conducted Speech Enhancement

Sheng Li, Fuming Chen, Jinyan Hu, Hongbo Li, Lijun Qiu, Ying Tian, Jianqi Wang

Design of Circular Patch With Double C-Shaped Slot Microstrip Antenna for LTE 1800 MHz

Yusnita Rahayu, Jherino Permana Putra

Design LTE Microstrip Antenna Rectangular Patch with Beetle-Shaped Slot

Yusnita Rahayu, Haziq Hazman, Razali Ngah

Wireless Body Area Networks for Healthcare Applications: An Overview

Muhammad Anwar, Abdul Hanan Abdullah, Kashif Naseer Qureshi, Abdul Hakeem Majid

Malicious User Attack in Cognitive Radio Networks

N. Armi, S. Rizvi, W.Z. Khan, H. Zangoti, W. Gharibi, C. Wael

Bandwidth and Gain Enhancement of MIMO Antenna by using Ring and Circular Parasitic with Air-Gap Microstrip Structure

Teguh Firmansyah, Herudin Herudin, Suhendar Suhendar, Romi Wiryadinata, M Iman Santoso, Yus Rama Denny, Toto Supriyanto

Wave Peak and Dispersion in Transmission of Bragg Grating Coupler

Romi Fadli Syahputra, Toto Saktioto, Ros Meri, Okfalisa Okfalisa, Syamsudhuha Syamsudhuha

Planar Microwave Sensors for Accurate Measurement of Material Characterization: A Review

Norhanani Abd Rahman, Zahriladha Zakaria, Rosemizi Abd Rahim, Yosza Dasril, Amyrul Azuan Mohd Bahar
Miniaturized Minkowski-Island Fractal Microstrip Antenna Fed by Proximity Coupling for Wireless Fidelity Application

I Putu Elba Duta Nugraha, Indra Surjati, Syah Alam

A Mathematical Approach for Hidden Node Problem in Cognitive Radio Networks

Felix Obite, Kamaludin Yusof, Jafri Din

Design and Improvement of a Compact Bandpass Filter using DGS Technique for WLAN and WiMAX Applications

Ahmed Boutejdar, Mohamed Amzi, Saad Dosse Bennani

Synchronization Control of Complex Dynamical Networks Based on Uncertain Coupling

Qianqian Jia

Integral Backstepping Approach for Mobile Robot Control

Kamel Bouzgou, Benaoumeur Ibari, Laredj Benchikh, Zoubir Ahmed-Foith

Development of Ammonia Gas Leak Detection and Location Method

Ding Xibo, Wang Ru-yue

Estimation of Optimum Number of Poles for Random Signal by Yule-Walker Method

A Review on Methods of Identifying and Counting Aedes Aegypti Larvae using Image Segmentation Technique

Mohamad Aqil Mohd Fuad, Mohd Ruddin Ab Ghani, Rozaimi Ghazali, Mohamad Fani Sulaima, Mohd Hafiz Jali, Tole Sutikno, Tarmizi Ahmad Izzuddin, Zanariah Jano

Feature Extraction of Musical Instrument Tones using FFT and Segment Averaging

Linggo Sumarno, I. Iswanjono
Decision Support System for Bats Identification using Random Forest and C5.0

Deden Sumirat Hidayat, Imas Sukaesih Sitanggang, Gono Semiadi

Predicting the Presence of Learning Motivation in Electronic Learning: a New Rules to Predict

Christina Juliane, Arry A. Arman, Husni S. Sastramihardja, Iping Supriana

A Crop Pests Image Classification Algorithm Based on Deep Convolutional Neural Network

RuJing Wang, Jie Zhang, Wei Dong, Jian Yu, ChengJun Xie, Rui Li, TianJiao Chen, HongBo Chen

Improving Posture Accuracy of Non-holonomic Mobile Robot System with Variable Universe of Discourse

Siti Nurmaini, Bambang Tutuko, Kemala Dewi, Velia Yuliza, Tresna Dewi

Improving DNA Barcode-based Fish Identification System on Imbalanced Data using SMOTE

Wisnu Ananta Kusuma, Nurdevi Noviana, Lailan Sahrina Hasibuan, Mala Nurilmala

Foreign Tourist Arrivals Forecasting Using Recurrent Neural Network Backpropagation Through Time

Wayan Oger Vihikan, I Ketut Gede Darma Putra, I Putu Arya Dharmaaedi

HABCO : A Robust Agent on Hybrid Ant-Bee Colony Optimization

Abba Suganda Girsang, Chun-Wei Tsai, Chu-Sing Yang

Regression Modelling for Precipitation Prediction Using Genetic Algorithms

Asyrofa Rahmi, Wayan Firdaus Mahmudy

Twitter’s Sentiment Analysis on Gsm Services using Multinomial Naïve Bayes

Aisah Rini Susanti, Taufik Djiatna, Wisnu Ananta Kusuma
Step-Function Approach for E-Learning Personalization
Sfenrianto Sfenrianto, Zainal A. Hasibuan

The Addition Symptoms Parameter on Sentiment Analysis to Measure Public Health Concerns
Yohanssen Pratama, Puspoko Ponco Ratno

A Novel Space–time Discontinuous Galerkin Method for Solving of One-dimensional Electromagnetic Wave Propagations
Pranowo Pranowo

Binarization of Ancient Document Images Based on Multipeak Histogram Assumption
Fitri Arnia, Khairul Munadi

Manager Perceptions towards the Success of E-Performance Reporting System
A’ang Subiyakto, Ditha Septiandani, Evy Nurmiati, Yusuf Durachman, Abd. Rahman Aghan, Mira Kartiwi

The Pessimistic Investor Sentiments Indicator in Social Networks
Rui Jin, Hong-Li Zhang, Xing Wang, Xiao-Meng Wang

Histogram Equalization for Improving Quality of Low-Resolution Ultrasonography Images
Retno Supriyanti, Subkhi Adhi Priyono, Eko Murdyantoro, Haris Budi Widodo

Social Media Success Model for Knowledge Sharing (Scale Development and Validation)
Setiawan Assegaff, H Hendri, Akwan Sunoto, Herti Yani, Desy Kisbiyanti

A Soft Set-based Co-occurrence for Clustering Web User Transactions
Edi Sutoyo, Iwan Tri Riyadi Yanto, Rd Rohmat Saedudin, Tutut Herawan
Using SVD and DWT Based Steganography to Enhance the Security of Watermarked Fingerprint Images

Mandy Douglas, Karen Bailey, Mark Leeney, Kevin Curran

Brown’s Weighted Exponential Moving Average Implementation in Forex Forecasting

Seng Hansun, Subanar Subanar
Foreign Tourist Arrivals Forecasting Using Recurrent Neural Network Backpropagation Through Time

Wayan Oger Vihikan*1, I Ketut Gede Darma Putra2, I Putu Arya Dharmaadi3
1,2,3Information Technology Department, Faculty of Engineering, Udayana University
Kampus Unud, Bukit Jimbaran, Bali, Indonesia-803611
telp/fax : (0361) 701954, 704845 / (0361) 701907
*Corresponding author, e-mail: ogervihikan@outlook.com

Abstract
Bali as an icon of tourism in Indonesia has been visited by many foreign tourists. Thus, Bali is one of the provinces that contribute huge foreign exchange for Indonesia. However, this potential could be threatened by the effectuation of the ASEAN Economic Community as it causes stricter competition among ASEAN countries including in tourism field. To resolve this issue, Balinese government need to forecast the arrival of foreign tourist to Bali in order to help them strategizing tourism plan. However, they do not have an appropriate method to do this. To overcome this problem, this study contributed a forecasting method using Recurrent Neural Network Backpropagation Through Time. We also compare this method with Single Moving Average method. The results showed that proposed method outperformed Single Moving Average in 10 countries tested with 80%, 70%, and 70% better MSE results for 1, 3 and 6 months ahead forecast respectively.

Keywords: Backpropagation Through Time, forecasting, tourism, Recurrent Neural Network

1. Introduction
The tourism industry is one of the huge industries that is growing very rapidly throughout the world. Many countries put the tourism sector as a strategic industry to increase revenue, including Indonesia, which has a great potential. Indonesia's tourism industry has become an important part of national development, as it can hold a lot of manpower, improve the local economy, and state revenues.

Bali as an icon of tourism in Indonesia and also as a world tourist destination that has a variety of art, culture and hospitality of the community has been visited by many foreign tourists. Data from Bali Tourism Office shows that since 2011 until 2015 the amount of foreign tourist arrivals to Bali is always increasing. For example, in 2011 the number of foreign tourist arrivals is 2,756,579, in 2012 it increased to 2,892,019, in 2013 it went up to 3,278,598, in 2014 it increased about 15% to 3,766,638 and in 2015 it climbed up to 4,001,835 [1]. In addition to that, Bali is the only province in Indonesia which has the highest amount of foreign tourist staying in star hotels since 2003 until 2015 [2]. Moreover, Bali won as the best island for holidaymakers and it is Bali’s 12th times [3]. These make Bali as one of the provinces that contribute huge foreign exchange for Indonesia.

In the end of 2015, ASEAN Economy Community (AEC) was applied. This will cause strict competition among ASEAN countries in a lot of sectors including tourism. Indonesia as part of ASEAN had already prepared a presidential decree which ask local government to improve competitiveness in order to face AEC. It means Balinese government have a good opportunity to maintain and improve the amount of foreign tourist arrivals to Bali by promoting Bali's tourism intensively and improving Bali's tourism facilities. These can be achieved by strategizing Bali's tourism based on past data of foreign tourist arrivals which lead to forecasting to get overview of foreign tourist arrivals in the future.

The problem is Balinese government do not have an appropriate method to forecast foreign tourist arrival to Bali. Their forecast for the current year is based on the last year foreign tourist arrival growth with analysis of several factors such as political situation and natural disasters. To help overcome that problem, this paper proposed Recurrent Neural Network as
forecasting method with Backpropagation Through Time as the training algorithm. Previous researches using Recurrent Neural Network Backpropagation Through Time show good results in forecasting time series data [4-7].

Therefore, the aims of this research is to contribute an accurate forecasting method of foreign tourist arrivals for Balinese government in order to anticipate the increase or decrease in foreign tourist arrivals to Bali. This will help Balinese government in setting up tourism facilities such as accommodation facilities (hotels, villas), infrastructure (roads, water, electricity), tourist attraction, restaurants, transportation, travel agencies, money changers and others.

2. Research Method

This research uses data of foreign tourist arrivals to Bali and their factors. The factors of foreign tourist arrivals are population of origin country, Gross Domestic Product (GDP) real of origin country and Consumer Price Index (CPI) in Indonesia relative to CPI of origin country [8]. Those data are taken from 2005 to 2015 and has time series characteristic. Time series data is a set of data generated sequentially in time [9].

Before beginning the process, the data have to be normalized and scaled to range between -1 and 1 using equation below. Then, the data is divided into 2 parts, those are training and test data.

$$\tilde{x} = \frac{(x - \text{minVal}) \times (\text{maxRange} - \text{minRange})}{(\text{maxVal} - \text{minVal})} + \text{minRange}$$ \hspace{1cm} (1)

With:
- x: Original data.
- \tilde{x}: Normalized data.
- maxVal: The maximum value of original data.
- minVal: The minimum value of original data.
- maxRange: The maximum value of normalized data (1).
- minRange: The minimum value of normalized data (-1).

Recurrent Neural Network is adapted from standard feed forward neural network that can model sequential data [10]. It allows the network to map from all previous inputs to each output [11]. It is easier to understand by looking to unfolded RNN in Figure 1, where previous time step is needed to calculate current time step which is shown as t-1 and t respectively. RNN BPTT is started by doing Forward Propagation process. This process will calculate the network output from the input data given using equation below [10].

$$h_t = \tanh(Ux_t + Wh_{t-1} + b_h)$$ \hspace{1cm} (2)

$$o_t = \tanh(Vh_t + b_o)$$ \hspace{1cm} (3)

With:
- h_t: Hidden state at time step t.
- U: Input to hidden state weight matrix.
- x_t: Input vector at time step t.
- W: Hidden to previous hidden state (recurrent) weight matrix.
- h_{t-1}: Hidden state at previous time step.
- b_h: Bias at hidden state.
- V: Hidden state to output weight matrix.
- b_o: Bias at output state.

![Figure 1. Unfolded Recurrent Neural Network](image-url)
After that the loss between network’s output and targeted output is calculated. In this case Mean Squared Error is used as the loss function. If the value close to 0, it means the network and targeted output or factual data value are close.

\[L = \frac{1}{2N} \sum_{i=1}^{N} (\hat{o}_i - o_i)^2 \]

With:

- \(L \) : Loss value.
- \(N \) : The amount of training data.
- \(\hat{o} \) : Network’s output.
- \(o \) : Targeted output.

Each of the weight matrices have to learn from the error (loss). This can be achieved by updating each weight matrices for each training data using Stochastic Gradient Descent. To do that, first Backpropagation Through Time should be applied. This algorithm calculates the gradient of loss function with respect to each weight matrix as formula below.

\[
\frac{\partial L}{\partial V} = \frac{\partial L}{\partial \hat{o}} \frac{\partial \hat{o}}{\partial z} \frac{\partial z}{\partial V} \]

\[
\frac{\partial L}{\partial b_o} = \frac{\partial L}{\partial \hat{o}} \frac{\partial \hat{o}}{\partial z} \frac{\partial z}{\partial b_o} \]

\[
\frac{\partial L}{\partial W} = \sum_{t=0}^{T} \frac{\partial L}{\partial \hat{o}} \frac{\partial \hat{o}}{\partial z} \frac{\partial h_T}{\partial h_t} \frac{\partial h_t}{\partial W} \]

\[
\frac{\partial L}{\partial b_h} = \frac{\partial L}{\partial \hat{o}} \frac{\partial \hat{o}}{\partial z} \frac{\partial h_T}{\partial h_t} \frac{\partial h_t}{\partial b_h} \]

\[
\frac{\partial L}{\partial U} = \sum_{t=0}^{T} \frac{\partial L}{\partial \hat{o}} \frac{\partial \hat{o}}{\partial z} \frac{\partial h_T}{\partial h_t} \frac{\partial h_t}{\partial U} \]

With:

- \(z \) : Network’s output before activation function (tanh) is applied.
- \(T \) : Current time step.

Finally, each weight matrix is updated with BPTT calculation results and learning rate. In order to avoid over-fitting and improve generalization, weight decay is used by multiplying each weight with regularization parameter before updating them [12]. The new weight matrices value will be used in the next time step. Formula for updating weight matrix is shown below.

\[
U = U - \eta \left(\frac{\partial L}{\partial U} + \lambda U \right) \]

\[
W = W - \eta \left(\frac{\partial L}{\partial W} + \lambda W \right) \]

\[
b_h = b_h - \eta \left(\frac{\partial L}{\partial b_h} \right) \]

\[
V = V - \eta \left(\frac{\partial L}{\partial V} + \lambda V \right) \]

\[
b_o = b_o - \eta \left(\frac{\partial L}{\partial b_o} \right) \]

With:

- \(\eta \) : Learning rate.
- \(\lambda \) : Regularization parameter.

All these processes are repeated for all training data and epoch. The test will be done by using test data and final weight matrices of training process into Forward Propagation process. Mean Squared Error will be used to see how good the network output when tested using test data.
Single Moving Average is a statistic method that can be used to forecasting time series data. It works by calculating the mean of a constant number of observations in a sliding time span and it will smooth the irregular fluctuation of data. The number of observations used is called the order of the series [13]. Previous research showed that Single Moving Average can be used to forecast time series data [14-15]. In this research Single Moving Average with order 2 or SMA(2) is used and calculated with formula below.

\[MA(2) = \sum_{t=t_1}^{t_2} x_t \]

(15)

With:

\[x_t \]: Number at index t.

3. Results and Analysis

There are 132 monthly data of foreign tourist arrival and 11 annual data for each foreign tourist arrival factor for each country which is taken from 2005 until 2015. Foreign tourist arrival factor data are divided by 12 to get the mean value for each month. All these data are divided into training and test data after normalizing process. There are 3 types of forecasting time period tested in this research, those are 1, 3, and 6 months ahead. Each time period has different amount of training data. Forecasting 1, 3, and 6 months ahead are done using 119, 117 and 114 data respectively and then tested using 12 data outside of the training data.

Web based application written in PHP and HTML is made to implement RNN BPTT and SMA(2) method. This application will train and test the network and showed the comparison results between those 2 methods and target data in chart form as shown in Figure 2 to 6.

The network consists of 4 input states where each of them represents input for foreign tourist arrivals, population of origin country, GDP of origin country and CPI of Indonesia relative to CPI of the origin country. There is 1 hidden layer with specified number of hidden state. The number of output state depends on the time period of forecasting, for example forecasting 3 months ahead will use 3 output states.

There are 36 network test configuration for each time period. The configuration variables are the amount of hidden state, number of epoch and learning rate. The number of hidden states are 5, 10 and 15. The number of epoch are 300, 400, and 500 and learning rate is 0.01, 0.05, 0.1, and 0.5. In Backpropagation Through Time process, truncated backpropagation is applied. It reduced the calculation cost because it only calculates \(k \) timesteps [16]. In this research \(k \) is 2, so the backpropagation process will calculate up to 2 time step only. Each of network configuration results are compared with Single Moving Average results in MSE form.

There are 10 countries tested, they are Australia, China, Malaysia, Japan, Singapore, South Korea, United Kingdom, United State of America, France and Germany. These are top 10 countries with highest foreign tourist arrival to Bali since 2011 to 2015 [1].

<table>
<thead>
<tr>
<th>Country</th>
<th>Hidden State</th>
<th>Epoch</th>
<th>Learning Rate</th>
<th>MSE of RNN BPTT Test Data</th>
<th>MSE of SMA(2) Test Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Australia</td>
<td>5</td>
<td>500</td>
<td>0.1</td>
<td>0.04835</td>
<td>0.08901</td>
</tr>
<tr>
<td>China</td>
<td>15</td>
<td>300</td>
<td>0.1</td>
<td>0.07835</td>
<td>0.08859</td>
</tr>
<tr>
<td>Malaysia</td>
<td>10</td>
<td>300</td>
<td>0.01</td>
<td>0.04479</td>
<td>0.09926</td>
</tr>
<tr>
<td>Japan</td>
<td>15</td>
<td>400</td>
<td>0.1</td>
<td>0.02358</td>
<td>0.03688</td>
</tr>
<tr>
<td>Singapore</td>
<td>10</td>
<td>300</td>
<td>0.01</td>
<td>0.06471</td>
<td>0.15260</td>
</tr>
<tr>
<td>South Korea</td>
<td>5</td>
<td>300</td>
<td>0.5</td>
<td>0.06990</td>
<td>0.10034</td>
</tr>
<tr>
<td>UK</td>
<td>10</td>
<td>400</td>
<td>0.01</td>
<td>0.09694</td>
<td>0.08209</td>
</tr>
<tr>
<td>USA</td>
<td>5</td>
<td>300</td>
<td>0.5</td>
<td>0.05883</td>
<td>0.05565</td>
</tr>
<tr>
<td>France</td>
<td>10</td>
<td>500</td>
<td>0.01</td>
<td>0.06447</td>
<td>0.08900</td>
</tr>
<tr>
<td>Germany</td>
<td>15</td>
<td>300</td>
<td>0.05</td>
<td>0.06988</td>
<td>0.09709</td>
</tr>
</tbody>
</table>

Table 1, 2, and 3 show the best network configuration with the smallest RNN BPTT MSE compared with SMA(2) MSE when testing those methods to forecast foreign tourist arrival to Bali. Table 1 shows the comparison between test data MSE of RNN BPTT and SMA with...
order 2 in 1 month ahead forecast. The comparison reveals that Australia, China, Malaysia, Japan, Singapore, South Korea, France and Germany RNN BPTT MSE are smaller than SMA(2) MSE. This means 8 out of 10 countries or 80% of them gives better results when tested using RNN BPTT method.

Table 2. Test results of 3 months ahead forecast

<table>
<thead>
<tr>
<th>Country</th>
<th>Hidden State</th>
<th>Epoch</th>
<th>Learning Rate</th>
<th>MSE of RNN BPTT Test Data</th>
<th>MSE of SMA(2) Test Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Australia</td>
<td>5</td>
<td>300</td>
<td>0.1</td>
<td>0.04083</td>
<td>0.07674</td>
</tr>
<tr>
<td>China</td>
<td>10</td>
<td>300</td>
<td>0.1</td>
<td>0.07025</td>
<td>0.09814</td>
</tr>
<tr>
<td>Malaysia</td>
<td>15</td>
<td>300</td>
<td>0.01</td>
<td>0.06534</td>
<td>0.09826</td>
</tr>
<tr>
<td>Japan</td>
<td>15</td>
<td>300</td>
<td>0.1</td>
<td>0.02654</td>
<td>0.03303</td>
</tr>
<tr>
<td>Singapore</td>
<td>15</td>
<td>400</td>
<td>0.01</td>
<td>0.09591</td>
<td>0.15136</td>
</tr>
<tr>
<td>South Korea</td>
<td>5</td>
<td>300</td>
<td>0.5</td>
<td>0.05893</td>
<td>0.10125</td>
</tr>
<tr>
<td>UK</td>
<td>15</td>
<td>400</td>
<td>0.01</td>
<td>0.11138</td>
<td>0.06971</td>
</tr>
<tr>
<td>USA</td>
<td>5</td>
<td>300</td>
<td>0.01</td>
<td>0.06250</td>
<td>0.05087</td>
</tr>
<tr>
<td>France</td>
<td>10</td>
<td>400</td>
<td>0.01</td>
<td>0.07302</td>
<td>0.08615</td>
</tr>
<tr>
<td>Germany</td>
<td>5</td>
<td>400</td>
<td>0.1</td>
<td>0.10328</td>
<td>0.08465</td>
</tr>
</tbody>
</table>

Table 2 shows the comparison between test data MSE of RNN BPTT and SMA with order 2 in 3 months ahead forecast. The comparison reveals that Australia, China, Malaysia, Japan, Singapore, South Korea and France RNN BPTT MSE are smaller than SMA(2) MSE. This means 7 out of 10 countries or 70% of them gives better results when tested using RNN BPTT method.

Table 3. Test results of 6 months ahead forecast

<table>
<thead>
<tr>
<th>Country</th>
<th>Hidden State</th>
<th>Epoch</th>
<th>Learning Rate</th>
<th>MSE of RNN BPTT Test Data</th>
<th>MSE of SMA(2) Test Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Australia</td>
<td>5</td>
<td>400</td>
<td>0.5</td>
<td>0.03370</td>
<td>0.05587</td>
</tr>
<tr>
<td>China</td>
<td>15</td>
<td>300</td>
<td>0.1</td>
<td>0.06417</td>
<td>0.09589</td>
</tr>
<tr>
<td>Malaysia</td>
<td>15</td>
<td>300</td>
<td>0.01</td>
<td>0.06969</td>
<td>0.09785</td>
</tr>
<tr>
<td>Japan</td>
<td>5</td>
<td>500</td>
<td>0.01</td>
<td>0.02304</td>
<td>0.02689</td>
</tr>
<tr>
<td>Singapore</td>
<td>10</td>
<td>400</td>
<td>0.1</td>
<td>0.07845</td>
<td>0.15263</td>
</tr>
<tr>
<td>South Korea</td>
<td>15</td>
<td>300</td>
<td>0.5</td>
<td>0.05356</td>
<td>0.08929</td>
</tr>
<tr>
<td>USA</td>
<td>5</td>
<td>400</td>
<td>0.01</td>
<td>0.06568</td>
<td>0.05386</td>
</tr>
<tr>
<td>USA</td>
<td>10</td>
<td>400</td>
<td>0.01</td>
<td>0.04830</td>
<td>0.04301</td>
</tr>
<tr>
<td>France</td>
<td>10</td>
<td>500</td>
<td>0.01</td>
<td>0.05771</td>
<td>0.09155</td>
</tr>
<tr>
<td>Germany</td>
<td>5</td>
<td>500</td>
<td>0.1</td>
<td>0.08870</td>
<td>0.06597</td>
</tr>
</tbody>
</table>

Table 3 shows the comparison between test data MSE of RNN BPTT and SMA with order 2 in 6 months ahead forecast. The comparison reveals that Australia, China, Malaysia, Japan, Singapore, South Korea and France RNN BPTT MSE are smaller than SMA(2) MSE. This means 7 out of 10 countries or 70% of them gives better results when tested using RNN BPTT method.

Figure 2. Forecast comparison chart between RNN BPTT, SMA(2), and real data of Australia
Figure 3. Forecast comparison chart between RNN BPTT, SMA(2), and real data of China

Figure 4. Forecast comparison chart between RNN BPTT, SMA(2), and real data of Malaysia

Figure 5. Forecast comparison chart between RNN BPTT, SMA(2), and real data of Japan

Figure 6. Forecast comparison chart between RNN BPTT, SMA(2), and real data of Singapore
Figure 2, 3, 4, 5 and 6 show one of test data result of first 5 countries tested in chart form that represent forecast test comparisons of foreign tourist arrival to Bali by RNN BPTT, SMA(2) and real data. The green line represents real data, pink line represents RNN BPTT forecast and blue line represents SMA(2) forecast. The values of tourist arrivals are still in range between -1 to 1.

4. Conclusion

Based on the research results can be concluded some points as following:

1) Recurrent Neural Network Backpropagation Through Time can be used as forecasting method of foreign tourist arrival to Bali by Balinese government due to the forecast test results for most countries tested in 1, 3, and 6 months ahead forecast are closer to factual data than Single Moving Average method's which is shown by their MSE value.

2) From 10 countries tested, 80% MSE of RNN BPTT for 1 month ahead forecast is smaller than MSE of SMA(2). For 3 and 6 months ahead forecast, 70% MSE of RNN BPTT is smaller than SMA(2). The smaller the MSE means the forecast test results are closer to factual data. These mean Recurrent Neural Network Backpropagation Through Time method outperformed Single Moving Average order 2 in forecasting foreign tourist arrival to Bali.

References