Proceeding

“Enhancing Academic Collaboration Through ASEA-UNINET Scientific Meeting”

February 15, 2016
Udayana University-Bukit Jimbaran Campus
Bali-Indonesia
LIST OF INTERNAL AND EXTERNAL REVIEWERS

INTERNAL REVIEWERS
1. Dr. Achmad Arifin (Institut Teknologi Sepuluh Nopember Surabaya)
2. Dr. Erma Suryani (Institut Teknologi Sepuluh Nopember Surabaya)
3. Dr. Dra. Ir. Chairani Hanum, M.S (University of Sumatera Utara)
4. Fajar Juang Ekaputra (Vienna University of Technology)
5. Prof. Harno Dwi Pranowo (Universitas Gadjah Mada Yogyakarta)
6. Prof. Ir. Gamantyo Hendrantono, M.Eng.,Ph.D (ITS Surabaya)
7. Prof. Mohamad Isa Irawan (Institut Teknologi Sepuluh Nopember Surabaya)
8. Satya Kumara, Ph.D (Udayana University Bali)
9. I Made Andi Arsana, Ph.D (Universitas Gadjah Mada Yogyakarta)
10. I Wayan Gede Astawa Karang, PhD (Udayana University Bali)
11. Prof. Moch. Amin Alamsjah, Ph.D (Universitas Airlangga)
12. David Segoh (Universitas Airlangga)
13. Dr. I Made Netra (Udayana University Bali)
14. Dr. Seri Malini (Udayana University Bali)
15. Drs. Ketut Tika.,MA (Udayana University Bali)
16. Dr. dr. I Putu Gede Adiatmika, M.Kes (Udayana University Bali)
17. dr. Ni Nengah Dwi Fatmawati, SP.MK. Ph.D (Udayana University Bali)
18. Prof. Dr. dr. Ketut Suastika , Sp.PD-KEMD (Udayana University Bali)
19. Agoes Ganesha Rahyuda, PhD (Udayana University Bali)
20. I Made Budi Arsika, SH.,LLM (Udayana University Bali)
21. Ni Putu Sri Harta Mimba, Ph.D (Udayana University Bali)
22. Prof. DR. Ningrum Natasya Sirait, SH.,MLI (University of Sumatera Utara)

EXTERNAL REVIEWERS
1. Dr. Christoph A. Hauzenberger (University of Graz)
2. Lisa Madlberger (Vienna University of Technology)
3. Univ.-Prof. Dr. Dietmar Haltrich (University of Natural Resources and Life Sciences)
4. Univ.-Prof. Dr. Hartmut Kahlert (University of Natural Resources and Life Sciences)
5. Prof. Dr. Erich Schmutzhard (Medical University of Innsbruck)
6. Niina Maarit Novak, Bsc. MSc. (Vienna University of Technology)

SETTING AND TYPESET
I Made Sena Darmasetyawan, S.S., M.Hum
I Made Yoga Dwi Angga

COVER
I Putu Oka Pradnyana, S.Kom

ii
TABLE OF CONTENT

FOREWORD .. I
LIST OF INTERNAL AND EXTERNAL REVIEWERS .. II
TABLE OF CONTENT .. IV
SCIENCE AND TECHNOLOGY .. 1
QUANTIFICATION OF ECOSYSTEM SERVICES OF URBAN GREEN SPACES: A TRANSCONTINENTAL CASE STUDY FRAMEWORK 1
 Jürgen Breuste .. 1
 Salman Qureshi ... 1
MAJA LEAF EXTRACT (AEGLE MARMELOS) AND SILICA GEL FOR UREA DETECTION BY USING CYCLIC VOLTAMMETRY 20
 Yunita Triana .. 20
 Tri Paus Hasiholan Hutapea .. 20
 Fredy Kurniawan ... 20
SLOPE STABILITY MONITORING DURING THE MONSOON PERIOD USING RESISTIVITY MEASUREMENT, WATER CONTENT AND TILTMETER SENSORS (CASE STUDY: NGANTANG – MALANG, EAST JAVA PROVINCE, INDONESIA) ... 28
 Ria Asih Aryani Soemitro .. 28
 Dwa Desa Warnana ... 28
SYNTHESIS OF GALACTO- AND HETERO-OLIGOSACCHARIDES BY BIFIDOBACTERIAL B-GALACTOSIDASES 36
 Sheryl Lozel Arreola ... 36
 Thu-Ha Nguyen ... 36
 Dietmar Haltrich ... 36
CONSISTENCY ANALYSIS OF MAPPING SYSTEM OF NOISE SPECTRAL FLUCTUATIONS IN MULTI-FREQUENCY USING TWO-DIMENSION DISCRETE WAVELET TRANSFORM (2D-DWT) 48
 Melinda .. 48
 Agus Santoso Tamsir ... 48
 Dadang Gunawan .. 48
 Dodi Sudiana .. 48
 Yuwaldi Away .. 48
A SEQUENTIAL HYPOTHESIS TESTING OF MULTIMODAL CARDIAC ANALYSIS ... 63
 Nada Fitrieyatul Hikmah .. 63
 Achmad Arifin .. 63
COAL PREPARATION USING DENSE MEDIUM CYCLONE TECHNOLOGY .. 141
 Retno Aita Diantari ... 141
 Isworo Pujotomo ... 141

DESIGN AND SIMULATION OF MEMS CAPACITIVE PRESSURE SENSOR USED IN BLOOD PRESSURE MONITOR .. 153
 Diem N. Ho .. 153
 Hanh-Dang Ngoc .. 153

PCR USING HYPERSENSITIVE REACTION AND PATHOGENICITY SPECIFIC PRIMER PAIR OF SEVERAL INFECTED HORTICULTURAL PLANTS ... 163
 Retno Kawuri ... 163
 Made Pharmawati .. 163

GROWTH HORMONE GENE POLYMORPHISM OF BALI CATTLE AT VILLAGE BREEDING CENTRE, NUSA PENIDA .. 169
 Besung INK .. 169
 Suwiti NK ... 169
 Yulita H .. 169
 Suardana IW .. 169
 Watiniastih NL ... 169
 Yowani C .. 169

POTENTIAL OF STREPTOMYCES SP. IN THE RHIZOSPHERE OF PLANTS ZINGIBERACEAE IN INHIBITING MULTIDRUG-RESISTANT ACINETOBACTER BAUMANNII ... 176
 Ni kadek Losiani .. 176
 Retno Kawuri ... 176
 Ketut Darmadi .. 176

POTENTIAL BACILLUS SP. AS BIOCONTROL AGENT OF BACTERIAL WILT RALSTONIA SOLANACEARUM IN VITRO ... 183
 Diah Kharismawati Djereng ... 183
 Retno Kawuri ... 183
 Yan Ramona ... 183

EFFECT OF EXPLANT TYPES AND PLANT GROWTH REGULATORS IN IN-VITRO CULTURE OF PINANGA ARINASAE ... 188
 Made Pharmawati .. 188
 I Made Anom Sutrisna Wijaya ... 188

IN SEARCH FOR JATROPHA CURCAS L. GENOTYPES SUITABLE FOR DRY LAND AREAS .. 193
Ida Ayu Astarini ... 193
Made Pharmawati .. 193
Edi Purlani ... 193
Bambang Heliyanto ... 193
DISTRIBUTED CYBER PHYSICAL SYSTEMS 202
Albert Treytl ... 202
MARITIME AFFAIRS ... 203
REVITALIZATION OF FISHERMAN SOCIAL INSTITUTION IN THE SUSTAINABLE COASTAL MANAGEMENT 204
R. Hamdani Harahap .. 204
LAW ENFORCEMENT AGAINST ILLEGAL, UNREPORTED AND UNREGULATED (IUU FISHING) IN INDONESIAN EXCLUSIVE ECONOMIC ZONE .. 214
Eka Martiana Wulansari .. 214
EFFICIENCY OF BIODIESEL PRODUCTION FROM WASTE TUNA OIL (THUNNUS SP.), SEAWEED KAPPAPHYCUS ALVAREZII AND GRACILARIA SP. .. 235
Mochammad Amin Alamsjah ... 235
Annur Ahadi Abdillah .. 235
Hutami Mustikawati .. 235
Suci Dwi Purnawa Atari .. 235
MAIN CHALLENGES FOR INDONESIA TO BECOME MARITIME FULCRUM ... 249
Professor Melda Kamil Ariadno ... 249
EU “YELLOW CARD” CRISIS AND ITS EFFECT ON THAI FISHERIES ... 266
Assistant Professor Charit Tingsabadh, Ph.D. 266
QUORUM SENSING INHIBITION AS AN ALTERNATIVE METHOD TO PROTECT PRAWN LARVAE FROM BACTERIAL INFECTION 277
Pande Gde Sasmita J .. 277
GROWTH AND MOTILITY OF CORAL’S DINOFLAGELLATE ENDOSYMBIONT SYMBIODINIM SP. AT ELEVATED TEMPERATURES ... 285
Widiastuti Karim ... 285
Michio Hidaka ... 285
Statistical analysis .. 288
Photochemical efficiency of PSII of Symbiodinium cells 288
THE ENSO SIGNAL ANALYSIS OF INDONESIAN SEAS BASED ON EIGHTEEN YEAR SATELLITE REMOTE SENSING DATASET 295

I Dewa Nyoman Nurweda Putra ... 295
Tasuku Tanaka ... 295

HUMANITIES, CULTURE AND MUSIC ... 303

CLIMATE ADAPTATION AND MITIGATION OF MAJAPAHIT’S HOUSING 13TH – 16TH CENTURY IN EAST JAVA 304

Yosafat Winarto* .. 304
Happy Ratna Santosa ... 304
Sri Nastiti Nugrahani Ekasivi ... 304

SMALL-SCALE HOUSING DEVELOPMENTS AND THEIR IMPLICATIONS ON THE DEVELOPMENT OF URBAN INFRASTRUCTURE AND FACILITIES .. 317

Ispurwono Soemarno .. 317
Purwanita Setijanti .. 317
Endy Yudho Prasetyo ... 317

KAMPUNG INNOVATION IN SUPPORT OF SMART CITY 333

Happy Ratna Santosa .. 333
Johan Silas .. 333
Purwanita Setijanti .. 333
Rita Ernawati .. 333

FORMULATING LOCAL MEASUREMENT FOR SMART SETTLEMENT IN INDONESIA ... 340

Purwanita Setijanti .. 340
Johan Silas .. 340
Rita Ernawati .. 340

OVERVIEW ON ALLEY OF KAMPUNG AS SHARED-PLACE BASED ON THE INHABITANT RELATIONSHIP REFERENCES IN KAMPUNG OF SURABAYA ... 351

Andarita Rolalisasi .. 351
Happy Ratna Santosa .. 351
Ispurwono Soemarno .. 351

I-POP: MIMICKING K-POP AS THE ‘NEW’ GLOBAL 358
S.M.Gietty Tambunan ... 358

COULD TOLERANCE BE THE PROBLEM’S SOLUTION? 373
Dewi Sikiani ... 373
Eunike E. Hiandarto .. 373
CONTINUITIES AND CHANGES NORTH SUMATRAN PERFORMING ARTS 381
Muhammad Takari .. 381

HEALTH, PHARMACY AND MEDICINE ... 394
DEVELOPMENT OF STANDARDIZED ETHANOL EXTRACT AND PRODUCTION OF HERBAL MEDICINE IN UNIVERSITAS AIRLANGGA ... 395
Sukardiman .. 395
Herra Studiawan ... 395
Lusiana Arifianti ... 395
Rakhmawati .. 395

IS THERE ANY IMPACT OF VDR GENE POLYMORPHISM APAI, FOKI AND BSMI IN BATAKS ETHNIC TO HAVE TUBERCULOSIS AND COULD VITAMIN D ALLEVIATE THIS INFECTION? 416
Yahwardiah Siregar.. 416
Bintang YM Sinaga ... 416

UNRECOGNIZED MANAGEMENT OF DISORDERS OF SEX DEVELOPMENT IN INDONESIA: PUBLIC HEALTH PERSPECTIVE 427
Sultana MH Faradz .. 427
A. Zulfa Juniarto ... 427

ASSOCIATION OF SRD5A2 GENE POLYMORPHISM AND INDONESIAN ISOLATED HYPOSPADIAS PATIENTS ... 433
Nura Eky Vikawati... 433
Ardy Santosa .. 433
Ahmad Zulfa Juniarto .. 433
Sultana MH Faradz* .. 433

PUBLIC HEALTH AWARENESS IN INTELLECTUAL DISABILITY FOCUS ON FRAGILE X SYNDROME: A COHORT STUDY IN INDONESIA ... 444
Tri Indah Winarni* .. 444
Farmaditya EP Mundhofir ... 444
Sultana MH Faradz .. 444

ANTIMICROBIAL ACTIVITY AND STRUCTURAL CHARACTERIZATION OF LIPOPEPTIDE PRODUCED BY BACILLUS AMYLOLIQUEFACIENS MD4-12 ... 453
DIFFERENTIATION POTENTIAL OF AMNIOTIC MEMBRANE AND DENTAL PULP DERIVED MESENCHYMAL STEM CELL TO GENERATE NEURON INDUCED WITH EGF, FGF, PDGF AND FORSKOLIN

1,2 Fedik Abdul Rantam, 1,4 Ferdiansyah, 1,3 Purwati, 1 Candra Bumi, 1 Helen Susilowati, 1 Eryk Hendrianto, 1,4 Dwi Novembri Utomo, 1,3 Heri Suroto, 1,3 Rosy Setiawati, 6 Nike Hendrijantini, 7 Rimayanti

YOGYAHEALTH - A COLLABORATIVE PROJECT IN YOGYAKARTA, INDONESIA, FOUNDED UNDER THE UMBRELLA OF ASEA-UNINET AND RUNNING SUCCESSFULLY FOR OVER 7 YEARS.

Matthias A. Lechner and The Yogyahealth Collaborative Team

ECONOMIC AND SOCIAL SCIENCES

THINK GLOBALLY AND ACT LOCALLY (THE ALTERNATIVE TO ENHANCE LOCAL BUSINESS PERFORMANCE, TOWARDS A GLOBAL BUSINESS)

Prihatin Lumbanraja

THE CAPACITY TO COPE WITH CLIMATE CHANGE OF COASTAL AGRICULTURE HOUSEHOLDS: A CASE STUDY IN THE RED RIVER DELTA, VIETNAM

Nguyen Dang Khao

Nguyen Huyen Trang

HOUSING PREFERENCE OF EDUCATIONAL BACKGROUND

Anita Dianingrum

Arlita Widyasari

Muhamad Faqih

Arina Hayati

BUDGET DEFICITS IN VIETNAM – FROM TARGET ECONOMIC “QUADRANGLE” TO “PENTAGON”

Hoang Thi Lan Huong

DOES INFORMATION DISCLOSURE AND TRANSPARENCY MATTER TO PERFORMANCE OF LISTED FIRMS IN VIETNAM?

Le Quang Canh

Nguyen Vu Hung

SERVICE E-MARKETPLACE PLATFORM FOR SENIOR CITIZENS

Leszek A. Maciaszek
HOUSING PREFERENCE FOR LOW-INCOME PEOPLE IN INDONESIA ... 556
Desy Rahmadaniyati .. 556
Muhammad Faqih .. 556
Arina Hayati ... 556

THE HOUSING PREFERENCE OF THE URBAN MIDDLE CLASS SOCIETY IN SURABAYA, INDONESIA .. 568
Emiria Letfiani .. 568
Andarita Rolalisasi ... 568
Muhammad Faqih .. 568
Arina Hayati ... 568

THE EUROPEAN UNION CONTEMPORARY RAPPROACHMENT TO ASIA PACIFIC COUNTRIES .. 575
Evi Fitriani ... 575

FIRST-GENERATION VS SECOND-GENERATION COLLEGE STUDENTS: THEIR ACADEMIC SELF-EFFICACY AND COLLEGE ADJUSTMENT .. 588
Tjut Rifameutia ... 588
Elok D. Malay .. 588

RISKS IN REAL ESTATE VALUATION OF STATE BANKS IN VIETNAM ... 604
Minh Ngoc, Nguyen .. 604

PERSONAL TRAITS OF LEADER IN SELECTED ENTERPRISES IN VIETNAM .. 613
Luong Thu HA .. 613

IMPACT OF CORPORATE GOVERNANCE ON FIRM PERFORMANCE EVIDENCE IN VIETNAM ... 628
Dao Thanh Tung .. 628

THE BILATERAL REAL EXCHANGE RATE AND THE CHINESE FOREIGN DIRECT INVESTMENT IN THE LAO PDR .. 641
Houmlack Mingboubpha .. 641
Sengsathit Vichitlasy .. 641

THROUGH A GENDER LENS: THE BANGSAMORO POLITICAL PARTIES IN MINDANAO, PHILIPPINES .. 651
Rosalie Arcala Hall ... 651

THE DYNAMICS TRI NING TRI ECOTOURISM IN BALI PROBLEMS AND STRATEGIES IN THE DEVELOPMENT OF THREE ECOTOURISM TYPES IN BALI .. 663
IN SEARCH FOR *JATROPHA CURCAS* L. GENOTYPES
SUITABLE FOR DRY LAND AREAS

Ida Ayu Astarini
idaastarini@yahoo.com*

Made Pharmawati
pharmawati@yahoo.com

Biology Department, Faculty of Mathematics and Natural Sciences, Udayana University,
Bali, Indonesia

Edi Purlani

Bambang Heliyanto
bheliyant@gmail.com

Indonesian Sweeten and Fiber Crops Research Institute (ISFCRI), Indonesia

Presented at the: ASEA-UNINET International Workshop Bali, 15th-18th, February 2016,
Udayana University, Widya Sabha, Campus Bukit Jimbaran.

Abstract

This study aims to identify potential *Jatropha* genotypes that able to grow in
dryland areas, to be used for alternative bioenergy source such as biofuel and
biodiesel. The project was carried out at Asembagus Experimental Field
Station, Situbondo, East Java, Indonesia. Thirty six accession collections from
eastern part of Indonesia were chosen for drought trial. Cuttings, 40 cm length
and 1.5 cm in diameter were planted in 35 cm diameter pot and watered every
morning. Ten weeks later, all accessions were exposed to four water regime
treatments, i.e. 20 – 39%, 40 – 59%, 60 – 79% and 80 – 100% of field capacity
with three replicates each treatment. Plant height, number of leaves, flower
initiation time, and plant performance were observed every week until 26
weeks. Number of stomata was counted at 12 weeks after treatment. Results
show that each accession has different response to water stress. A number of
accessions have good adaptability in limited water supply, including accession
no 26 which has the best vegetative growth; accession no 8, 14, 18, 19, 30, 35
and 36 that able to produce fruit at the end of the observation time. Accession
34 was not adapted to drought.

Keywords: jarak pagar, biodiesel, biofuel, drought tolerance

1 INTRODUCTION

Fossil fuels consumption around the worlds and particularly in Indonesia is very high
(Suryana, 2007). In contrast, fossil fuels supplies are decreasing. Increasing fossil fuels
price in the International market will increase Indonesia budget since the amount of
government subsidies would increase, while reducing fuel subsidy would give significant
impact for the community, such as increase in retail prices and industrial sector would
stagnant (Hasnam, 2007). Strategic plan should be taken, including development of renewable energy as an alternative source for fuel.

In the effort to advance bioenergy in the country, Indonesian government has issued Presidential Regulation No. 5, Year 2006 about National Energy Policy. One of the targets is to reach more than 5% national bioenergy consumption in the year 2025 (Hamdi, 2006).

Green bioenergy to replace solar and crude oil can be produce from a number of renewable sources such as vegetable oil (Canola, Brassica napus) (Riley, 2004), palm oil, coconut oil, sorghum, sugar cane, and the most popular source in Indonesia currently is Jatropha curcas (Prihandana and Hendroko, 2006). The advantages of Jatropha curcas compared to other plant sources are there is no competition with other uses, such as palm oil for cooking oil (Prastowo, 2007). Producing biofuel from local plants will give benefit in reducing dependency to fossil fuel, increase income from farming sector and open up work opportunity as well as environmentally friendly (Timmas BBN, 2007).

In accordance to vision and mission on estate development and considering the prospect, commodity potency and opportunity, development of Jatropha in Indonesia was aim toward maximizing neglected land and marginal land, which are usually dry land with limited rainfall (Suryana, 2007). Therefore, it is necessary to develop Jatropha plantation that withstand and able to produce fruits with high content of oil.

Puslitbangun (Indonesian Research Centre for Estate Plants) and Balittas (Indonesian Sweeten and Fiber Crops Research Institute, ISFCRI) were given mandatory to focus on Jatropha research. This two institutes has explored genetic materials of Jatropha curcas from Indonesia, and planted at three main research station, Kebun Induk Jarak Pagar Asembagus, Situbondo, East Java (for dry climate), Kebun Induk Jarak Pagar Muktiharjo, Pati, Centre Java (for mild climate) and Kebun Induk Jarak Pagar Pakuwon, Sukabumi, West Jawa (for wet climate).

Evaluation of all the accession has resulted in three selected population with productivity around 4-5 ton per ha. However, selected population can only be achieved at a good cultural practice (Mulyani et al, 2006). Therefore, in practice, only farmers with big capital (investor) that able to reach maximal productivity of selected Jatropha accession, while ordinary farmers would not get the benefit as they only practice low input with limited rainfall (400 – 600 mm per year).

Successful breeding program will depend on validity of selection criteria being used. A number of characters that highly correlate with seed productivity of Jatropha are: proportion of male and female flowers on each inflorescence, number of inflorescence per plant, number of fruit per inflorescence, number of inflorescence per branch, number of seed per capsule and number of reproductive branch (Hasnam, 2007).

The aim of this research is to identify Jatropha germplasms that are well adapted to dry land areas. Long term goal is to obtain superior varieties to support the development of energy alternative in Indonesia.

2 METHOD

Field-pot trial to select drought tolerance accession of Jatropha curcas was carried out at Indonesian Sweeten and Fiber Crops Research Institute (ISFCRI) at Asem Bagus District, Situbondo Regency, East Java. Jatropha curcas seed from 34 accession and 2 selected clones (IP 1A and IP 2A) were planted in 35 cm diameter pot. Accession was collected from dry land areas of Eastern part of Indonesia including West Nusa Tenggara, East Nusa Tenggara, South Sulawesi and East Java. Media consists of soil and cow manure (13:1).
Both soil and cow manure was screened before mixing to obtain homogenized media texture. Jatropha cutting were used as plant materials. Same size of cutting were chosen, with ± 1.5 cm diameter and ± 40 cm height. The tip of the cutting were cover with plastic to avoid standing water that can cause fungi or bacteria infection. Watering was done every morning between 7 – 9 am. Pots were place in the open areas without shade to make sure plants obtain full sunlight to maximize growth.

Screening for drought tolerance was started when cuttings exhibited healthy grows, shown by having 2 branches and plant heigh around 90 – 110 cm, which was around 10 weeks after planting. Cuttings were exposed to 4 different levels of water stress, i.e. 80 – 100%, 60 – 79%, 40 – 59% and 20 – 39% from field capacity. Randomized completely block design were use in this experiment, with three replicates for each treatment, and two sub unit each replicate.

Soil water level on each pot was measure every morning using gypsum block. In each pot, cylindrical gypsum block, with dimension of 3 cm diameter and 5 cm length, was planted and connected with 30 cm length cable/filament. To measure media water level, cable from gypsum block was connected to gypsum meter and the water level will shows on the monitor. Based on the water level measured, water was then added as needed until the gypsum meter shows the water level according to the treatment. Water regime treatment was done for 4 months (16 weeks) during dry season. Observation was done every week, including plant height, number of primarily branches and secondary branches, number of leaves, time of first flowering, percentages/proportion of male and female flowers.

3 FINDINGS AND DISCUSSIONS

Results shows that there are variation observed among cultivars after four months observation on vegetatif and generatif growth. Details observation as follows:

3.1 Plant height and number of leaves

Plant height at the end of observation period (26 weeks after planting, WAP), shows variation among accession. Plant height on treatment 80-100% water regime ranging from 35 cm (accession no 1 and 21) to 62 cm (accession no 7) showing accession 1 and 21 has slow growth, while accession 7 has fast growth in good water supply.

Each accession shows different response to water regime treatments. Accession no. 4, 13, 30 shows sharp decrease in plant height with decrease of water supply (Table 1). According to Sarvestani and Pirdasthi (2008), water stress significantly affect plant height. Decrease in plant height can be due to inhibition on cell elongation or inhibition to cell division due to limited water availability. Other accession such as accession no 1, 3, 17, and 26 did not affected by water stress and has the same plant height or event taller than control plants (plants that were given 100% water). The results shows those accession able to adapt on dry environment.

Observation on number of leaves also shows a similar trend with plant height. Each accession has a different response to water regime, as revealed by different number of leaves. There was a positive correlation between plant height and number of leaves, in which the taller the plants, the more leaves they have. It is presumable that accession with drought tolerance has stable plant height and a lot of leaves, has high vegetative biomass a. Lots of leaves means better photosynthesis (Germ et al., 2005)
3.2 Number of branches
Observation on number of primary and secondary branches do not show significant differences among cultivars, after treatment with drought level. Every accession has in average 3 primary branches. A number of accessions did not produce secondary branches, such as accession no 19, 20, 22 and 31. This may be due to the specific characteristics of those accessions. Accession no 2 and 33 have a lot of branch, which is a preferable characteristic for selection in *Jatropha*. The more branches on each plant, the more flowers will be produced and ultimately the more fruit will be produced.

3.3 Flowering time and proportion of male and female flowers
Jatropha accession produced by cutting were started to flower at 10 WAP. Flowering times varied between cultivars and between treatments. Plants on control treatments (given 80-100% water supply) in general shows the earliest flowering time compared to plants treated with lower water level. Accession no 3, 4, 6, 10, 15 and 36, water regime treatment causing plants to flower earlier compared to optimum water supply (Table 1). Earlier flowering time is a mechanism for plants to survive.

3.4 Plant vigor
Observation on plant vigor was done with scoring from 1 – 4. Score 1 shows plants are dying, score 2 shows plants are weak or slender, short and low number of leaves, score 3 means healthy plants, many branch and many leaves, score 4 shows healthy plants, tall with many branches and many leaves.

In general, *Jatropha* accession shows decreasing score with increasing water stress treatment (Table 1). This shows that *Jatropha* plants needed plenty of water to grow and develop. Accession 14 and 35 shows healthy plants grow on all water regime treatments.

Table 1. Average plant height, number of leaves, number of branches, first flowering time and vigor score of each accession of *Jatropha curcas*, exposed to different treatment of water regime, 26 weeks after planting.

<table>
<thead>
<tr>
<th>Accession no</th>
<th>Water regime</th>
<th>Plant height (cm)</th>
<th>No. of leaves</th>
<th>No. of branch</th>
<th>Flowering time (WAP)</th>
<th>Vigor score</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>80-100%</td>
<td>35.2</td>
<td>18.1</td>
<td>3.0</td>
<td>18.3</td>
<td>3.5</td>
</tr>
<tr>
<td></td>
<td>60-79%</td>
<td>35.2</td>
<td>35.2</td>
<td>2.7</td>
<td>17</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>40-59%</td>
<td>31.3</td>
<td>31.3</td>
<td>2.3</td>
<td>Not yet</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>20-39%</td>
<td>38.8</td>
<td>38.8</td>
<td>3.0</td>
<td>16</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>80-100%</td>
<td>56.8</td>
<td>29.4</td>
<td>3.3</td>
<td>17</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>60-79%</td>
<td>50.0</td>
<td>50.0</td>
<td>2.7</td>
<td>15.5</td>
<td>3.5</td>
</tr>
<tr>
<td></td>
<td>40-59%</td>
<td>48.2</td>
<td>48.2</td>
<td>3.0</td>
<td>16.5</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>20-39%</td>
<td>46.0</td>
<td>46.0</td>
<td>3.3</td>
<td>15.5</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>80-100%</td>
<td>44.5</td>
<td>23.8</td>
<td>3.3</td>
<td>17</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>60-79%</td>
<td>42.2</td>
<td>42.2</td>
<td>3.0</td>
<td>16.3</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>40-59%</td>
<td>40.7</td>
<td>40.7</td>
<td>3.3</td>
<td>16</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>20-39%</td>
<td>40.3</td>
<td>40.3</td>
<td>2.7</td>
<td>18</td>
<td>2.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>80-100%</td>
<td>53.2</td>
<td>28.6</td>
<td>2.3</td>
<td>17</td>
<td>3.5</td>
</tr>
<tr>
<td></td>
<td>60-79%</td>
<td>40.0</td>
<td>40.0</td>
<td>3.3</td>
<td>19</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>40-59%</td>
<td>37.3</td>
<td>37.3</td>
<td>4.3</td>
<td>Not yet</td>
<td>1.5</td>
</tr>
<tr>
<td></td>
<td>20-39%</td>
<td>34.0</td>
<td>34.0</td>
<td>2.7</td>
<td>22</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>80-100%</td>
<td>41.8</td>
<td>23.4</td>
<td>3.0</td>
<td>16</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>60-79%</td>
<td>38.5</td>
<td>38.5</td>
<td>3.3</td>
<td>Not yet</td>
<td>2.5</td>
</tr>
<tr>
<td></td>
<td>40-59%</td>
<td>32.2</td>
<td>32.2</td>
<td>3.0</td>
<td>Not yet</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>20-39%</td>
<td>33.2</td>
<td>33.2</td>
<td>3.0</td>
<td>16</td>
<td>1.5</td>
</tr>
<tr>
<td>6</td>
<td>80-100%</td>
<td>54.0</td>
<td>30.0</td>
<td>3.0</td>
<td>18</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>60-79%</td>
<td>37.0</td>
<td>37.0</td>
<td>3.0</td>
<td>19</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>40-59%</td>
<td>42.2</td>
<td>42.2</td>
<td>3.7</td>
<td>20.5</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>20-39%</td>
<td>35.0</td>
<td>35.0</td>
<td>3.7</td>
<td>20</td>
<td>1.5</td>
</tr>
<tr>
<td>7</td>
<td>80-100%</td>
<td>62.2</td>
<td>34.6</td>
<td>3.0</td>
<td>17.3</td>
<td>3.5</td>
</tr>
<tr>
<td></td>
<td>60-79%</td>
<td>47.5</td>
<td>47.5</td>
<td>3.0</td>
<td>15</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>40-59%</td>
<td>38.1</td>
<td>38.1</td>
<td>3.0</td>
<td>17</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>20-39%</td>
<td>38.7</td>
<td>38.7</td>
<td>3.0</td>
<td>Not yet</td>
<td>2</td>
</tr>
<tr>
<td>8</td>
<td>80-100%</td>
<td>51.8</td>
<td>29.9</td>
<td>3.3</td>
<td>18.5</td>
<td>3.5</td>
</tr>
<tr>
<td></td>
<td>60-79%</td>
<td>42.2</td>
<td>42.2</td>
<td>2.3</td>
<td>17</td>
<td>2.5</td>
</tr>
<tr>
<td></td>
<td>40-59%</td>
<td>38.8</td>
<td>38.8</td>
<td>3.0</td>
<td>Not yet</td>
<td>2.5</td>
</tr>
<tr>
<td></td>
<td>20-39%</td>
<td>40.7</td>
<td>40.7</td>
<td>3.7</td>
<td>18</td>
<td>2.5</td>
</tr>
<tr>
<td>9</td>
<td>80-100%</td>
<td>49.5</td>
<td>29.3</td>
<td>3.3</td>
<td>16.33333</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>60-79%</td>
<td>45.2</td>
<td>45.2</td>
<td>3.0</td>
<td>19</td>
<td>3.5</td>
</tr>
<tr>
<td></td>
<td>40-59%</td>
<td>42.7</td>
<td>42.7</td>
<td>2.0</td>
<td>15</td>
<td>2.5</td>
</tr>
<tr>
<td></td>
<td>20-39%</td>
<td>30.0</td>
<td>30.0</td>
<td>2.3</td>
<td>Not yet</td>
<td>2</td>
</tr>
<tr>
<td>10</td>
<td>80-100%</td>
<td>41.0</td>
<td>25.5</td>
<td>2.7</td>
<td>16</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>60-79%</td>
<td>38.0</td>
<td>38.0</td>
<td>3.0</td>
<td>15</td>
<td>2.5</td>
</tr>
<tr>
<td></td>
<td>40-59%</td>
<td>36.3</td>
<td>36.3</td>
<td>3.3</td>
<td>16</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>20-39%</td>
<td>38.7</td>
<td>38.7</td>
<td>2.0</td>
<td>18</td>
<td>2</td>
</tr>
<tr>
<td>11</td>
<td>80-100%</td>
<td>49.5</td>
<td>30.3</td>
<td>3.0</td>
<td>18.3</td>
<td>3.5</td>
</tr>
<tr>
<td></td>
<td>60-79%</td>
<td>34.3</td>
<td>34.3</td>
<td>3.0</td>
<td>15</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>40-59%</td>
<td>38.5</td>
<td>38.5</td>
<td>3.7</td>
<td>19</td>
<td>2.5</td>
</tr>
<tr>
<td></td>
<td>20-39%</td>
<td>38.2</td>
<td>38.2</td>
<td>3.3</td>
<td>15</td>
<td>3</td>
</tr>
<tr>
<td>12</td>
<td>80-100%</td>
<td>39.5</td>
<td>25.8</td>
<td>3.0</td>
<td>15.5</td>
<td>2.5</td>
</tr>
<tr>
<td></td>
<td>60-79%</td>
<td>36.7</td>
<td>36.7</td>
<td>3.0</td>
<td>15.5</td>
<td>2.5</td>
</tr>
<tr>
<td></td>
<td>40-59%</td>
<td>32.0</td>
<td>32.0</td>
<td>3.3</td>
<td>15.3</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>20-39%</td>
<td>33.9</td>
<td>33.9</td>
<td>3.0</td>
<td>15</td>
<td>1.5</td>
</tr>
<tr>
<td>13</td>
<td>80-100%</td>
<td>44.7</td>
<td>28.8</td>
<td>2.3</td>
<td>16.3</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>60-79%</td>
<td>39.7</td>
<td>39.7</td>
<td>2.3</td>
<td>16.3</td>
<td>2.5</td>
</tr>
<tr>
<td></td>
<td>40-59%</td>
<td>38.3</td>
<td>38.3</td>
<td>2.7</td>
<td>18</td>
<td>1.5</td>
</tr>
<tr>
<td>20-39%</td>
<td>31.0</td>
<td>31.0</td>
<td>2.3</td>
<td>17</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>------</td>
<td>------</td>
<td>-----</td>
<td>----</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>80-100%</td>
<td>52.0</td>
<td>33.0</td>
<td>2.7</td>
<td>17</td>
<td>4</td>
</tr>
<tr>
<td>60-79%</td>
<td>49.7</td>
<td>49.7</td>
<td>2.7</td>
<td>21</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>40-59%</td>
<td>43.3</td>
<td>43.3</td>
<td>3.0</td>
<td>19.5</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>20-39%</td>
<td>49.2</td>
<td>49.2</td>
<td>3.0</td>
<td>18</td>
<td>3.5</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>80-100%</td>
<td>51.5</td>
<td>33.3</td>
<td>3.3</td>
<td>18</td>
<td>3.5</td>
</tr>
<tr>
<td>60-79%</td>
<td>37.3</td>
<td>37.3</td>
<td>2.7</td>
<td>19</td>
<td>3.5</td>
<td></td>
</tr>
<tr>
<td>40-59%</td>
<td>35.7</td>
<td>35.7</td>
<td>3.3</td>
<td>16</td>
<td>2.5</td>
<td></td>
</tr>
<tr>
<td>20-39%</td>
<td>40.0</td>
<td>40.0</td>
<td>3.0</td>
<td>21</td>
<td>1.5</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>80-100%</td>
<td>52.8</td>
<td>34.4</td>
<td>2.7</td>
<td>15.5</td>
<td>3</td>
</tr>
<tr>
<td>60-79%</td>
<td>36.2</td>
<td>36.2</td>
<td>3.0</td>
<td>16</td>
<td>2.5</td>
<td></td>
</tr>
<tr>
<td>40-59%</td>
<td>40.3</td>
<td>40.3</td>
<td>3.3</td>
<td>20</td>
<td>2.5</td>
<td></td>
</tr>
<tr>
<td>20-39%</td>
<td>38.0</td>
<td>38.0</td>
<td>2.7</td>
<td>Not yet</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>80-100%</td>
<td>39.0</td>
<td>31.0</td>
<td>2.7</td>
<td>16</td>
<td>2.5</td>
</tr>
<tr>
<td>60-79%</td>
<td>41.8</td>
<td>41.8</td>
<td>3.0</td>
<td>18</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>40-59%</td>
<td>43.2</td>
<td>43.2</td>
<td>3.3</td>
<td>21</td>
<td>3.5</td>
<td></td>
</tr>
<tr>
<td>20-39%</td>
<td>36.3</td>
<td>36.3</td>
<td>2.7</td>
<td>Not yet</td>
<td>2.5</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>80-100%</td>
<td>44.0</td>
<td>31.0</td>
<td>2.7</td>
<td>16</td>
<td>2.5</td>
</tr>
<tr>
<td>60-79%</td>
<td>35.5</td>
<td>35.5</td>
<td>3.0</td>
<td>Not yet</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>40-59%</td>
<td>36.0</td>
<td>36.0</td>
<td>3.0</td>
<td>Not yet</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>20-39%</td>
<td>35.0</td>
<td>35.0</td>
<td>3.0</td>
<td>17</td>
<td>2.5</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>80-100%</td>
<td>39.7</td>
<td>29.3</td>
<td>4.0</td>
<td>18.3</td>
<td>3</td>
</tr>
<tr>
<td>60-79%</td>
<td>32.8</td>
<td>32.8</td>
<td>3.0</td>
<td>Not yet</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>40-59%</td>
<td>38.8</td>
<td>38.8</td>
<td>3.0</td>
<td>16.5</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>20-39%</td>
<td>32.0</td>
<td>32.0</td>
<td>3.3</td>
<td>17</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>80-100%</td>
<td>40.7</td>
<td>30.3</td>
<td>3.0</td>
<td>19.3</td>
<td>3</td>
</tr>
<tr>
<td>60-79%</td>
<td>35.2</td>
<td>35.2</td>
<td>2.7</td>
<td>17</td>
<td>1.5</td>
<td></td>
</tr>
<tr>
<td>40-59%</td>
<td>31.7</td>
<td>31.7</td>
<td>2.7</td>
<td>16</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>20-39%</td>
<td>39.7</td>
<td>39.7</td>
<td>3.0</td>
<td>16</td>
<td>2.5</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>80-100%</td>
<td>35.3</td>
<td>28.2</td>
<td>3.3</td>
<td>15</td>
<td>2.5</td>
</tr>
<tr>
<td>60-79%</td>
<td>31.3</td>
<td>31.3</td>
<td>3.3</td>
<td>16</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>40-59%</td>
<td>26.2</td>
<td>26.2</td>
<td>2.7</td>
<td>16</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>20-39%</td>
<td>32.3</td>
<td>32.3</td>
<td>3.7</td>
<td>Not yet</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>80-100%</td>
<td>43.2</td>
<td>32.6</td>
<td>3.0</td>
<td>17</td>
<td>3</td>
</tr>
<tr>
<td>60-79%</td>
<td>31.4</td>
<td>31.4</td>
<td>3.0</td>
<td>19</td>
<td>2.5</td>
<td></td>
</tr>
<tr>
<td>40-59%</td>
<td>32.0</td>
<td>32.0</td>
<td>3.3</td>
<td>15</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>20-39%</td>
<td>30.3</td>
<td>30.3</td>
<td>2.3</td>
<td>Not yet</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>80-100%</td>
<td>51.2</td>
<td>37.1</td>
<td>3.7</td>
<td>17.7</td>
<td>3.5</td>
</tr>
<tr>
<td></td>
<td>60-79%</td>
<td>40-59%</td>
<td>20-39%</td>
<td>80-100%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td>---------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>60-79%</td>
<td>38.3</td>
<td>38.3</td>
<td>3.0</td>
<td>16</td>
<td>3.5</td>
</tr>
<tr>
<td></td>
<td>40-59%</td>
<td>39.7</td>
<td>39.7</td>
<td>3.0</td>
<td>20</td>
<td>2.5</td>
</tr>
<tr>
<td></td>
<td>20-39%</td>
<td>41.0</td>
<td>41.0</td>
<td>3.0</td>
<td>16</td>
<td>2</td>
</tr>
<tr>
<td>25</td>
<td>60-79%</td>
<td>36.0</td>
<td>36.0</td>
<td>2.3</td>
<td>15</td>
<td>2.5</td>
</tr>
<tr>
<td></td>
<td>40-59%</td>
<td>31.7</td>
<td>31.7</td>
<td>3.0</td>
<td>17</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>20-39%</td>
<td>35.0</td>
<td>35.0</td>
<td>2.3</td>
<td>16</td>
<td>1.5</td>
</tr>
<tr>
<td>26</td>
<td>60-79%</td>
<td>44.7</td>
<td>44.7</td>
<td>3.0</td>
<td>17.5</td>
<td>2.5</td>
</tr>
<tr>
<td></td>
<td>40-59%</td>
<td>37.5</td>
<td>37.5</td>
<td>3.0</td>
<td>23</td>
<td>2.5</td>
</tr>
<tr>
<td></td>
<td>20-39%</td>
<td>32.2</td>
<td>32.2</td>
<td>3.3</td>
<td>Not yet</td>
<td>3</td>
</tr>
<tr>
<td>27</td>
<td>60-79%</td>
<td>38.0</td>
<td>38.0</td>
<td>2.0</td>
<td>18.5</td>
<td>2.5</td>
</tr>
<tr>
<td></td>
<td>40-59%</td>
<td>41.3</td>
<td>41.3</td>
<td>3.3</td>
<td>17.5</td>
<td>2.5</td>
</tr>
<tr>
<td></td>
<td>20-39%</td>
<td>39.7</td>
<td>39.7</td>
<td>3.0</td>
<td>16</td>
<td>1.5</td>
</tr>
<tr>
<td>28</td>
<td>60-79%</td>
<td>38.3</td>
<td>38.3</td>
<td>2.0</td>
<td>16.7</td>
<td>3.5</td>
</tr>
<tr>
<td></td>
<td>40-59%</td>
<td>37.7</td>
<td>37.7</td>
<td>3.3</td>
<td>15</td>
<td>2.5</td>
</tr>
<tr>
<td></td>
<td>20-39%</td>
<td>35.0</td>
<td>35.0</td>
<td>2.3</td>
<td>Not yet</td>
<td>2</td>
</tr>
<tr>
<td>29</td>
<td>60-79%</td>
<td>37.8</td>
<td>37.8</td>
<td>2.0</td>
<td>16</td>
<td>2.5</td>
</tr>
<tr>
<td></td>
<td>40-59%</td>
<td>33.7</td>
<td>33.7</td>
<td>3.3</td>
<td>16</td>
<td>2.5</td>
</tr>
<tr>
<td></td>
<td>20-39%</td>
<td>29.7</td>
<td>29.7</td>
<td>2.7</td>
<td>Not yet</td>
<td>2</td>
</tr>
<tr>
<td>30</td>
<td>60-79%</td>
<td>37.5</td>
<td>37.5</td>
<td>2.0</td>
<td>18</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>40-59%</td>
<td>45.7</td>
<td>45.7</td>
<td>3.0</td>
<td>18.3</td>
<td>2.5</td>
</tr>
<tr>
<td></td>
<td>20-39%</td>
<td>42.0</td>
<td>42.0</td>
<td>3.3</td>
<td>17.5</td>
<td>2.5</td>
</tr>
<tr>
<td>31</td>
<td>60-79%</td>
<td>32.0</td>
<td>32.0</td>
<td>2.0</td>
<td>15</td>
<td>2.5</td>
</tr>
<tr>
<td></td>
<td>40-59%</td>
<td>44.5</td>
<td>44.5</td>
<td>3.3</td>
<td>16.3</td>
<td>2.5</td>
</tr>
<tr>
<td></td>
<td>20-39%</td>
<td>32.0</td>
<td>32.0</td>
<td>3.3</td>
<td>15</td>
<td>1.5</td>
</tr>
<tr>
<td>32</td>
<td>60-79%</td>
<td>39.3</td>
<td>39.3</td>
<td>2.0</td>
<td>16</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>40-59%</td>
<td>37.0</td>
<td>37.0</td>
<td>3.3</td>
<td>17.5</td>
<td>2.5</td>
</tr>
<tr>
<td></td>
<td>20-39%</td>
<td>34.3</td>
<td>34.3</td>
<td>2.7</td>
<td>15</td>
<td>2</td>
</tr>
</tbody>
</table>
4 CONCLUSIONS AND SUGGESTIONS

It can be concluded that *Jatropha* accessions have varied response to water stress. Accession 8, 14, 18, 19, 30, 35 and 36 has good vigour. Accession no 34 is very sensitive to water regime and cannot withstand water stress. Accession 26 has the best vegetative growth. Accession 2 and 33 has many branches with potential on producing many fruits. Accession 2, 26 and 33 could be used as parent line for breeding for drought tolerance plants.

To evaluate performance of accession selected from current pot trials, it can be suggested to do a field trial in dryland region in Indonesia such as north part of Bali, West Nusa Tenggara and East Nusa Tenggara.

ACKNOWLEDGEMENTS

This research was supported by Indonesian Agency for Agricultural Research and Development, Ministry of Agriculture, Indonesia through KKP3T Grant. Thank you to Balittas Malang for the facility at Asembagus field station and providing *Jatropha* plant materials.

REFERENCES

Hasnam. (2007). Status perbaikan dan penyediaan bahan tanaman jarak pagar (*Jatropha curcas* L.), In: Prosiding Lokakarya II: Status Teknologi Tanaman Jarak Pagar,

