EDITOR IN CHIEF
I Wayan Suardana (Udayana University, Indonesia)

CO EDITOR IN CHIEF
I Nyoman Suarsana (Udayana University, Indonesia)
Ni Ketut Suwiti (Udayana University, Indonesia)
I.G.M. Krisna Erawan (Udayana University, Indonesia)

EDITORIAL BOARDS

A.A. Ayu Mirah Adi (Udayana University, Indonesia)
Aris Haryanto (Gadjah Mada University, Indonesia)
Christian Bauer (Justus Liebig, Germany)
Alan P. Dargantes (Central Mindanao University, Philippines)
Zdenek Knotek (Brno University, Czechoslovakia)
Dyah Ayu Widiasih (Gadjah Mada University, Indonesia)

Komang G. Wiryawan (Bogor Agriculture University, Indonesia)
Michael Haryadi Wibowo (Gadjah Mada University, Indonesia)
Omar Akineden (Justus Liebig University, Germany)
Saleha Abd. Aziz (University of Putra Malaysia, Malaysia)
Duangporn Pichpol (Chiang Mai University, Thailand)
Yasunobo Matsumoto (The University of Tokyo, Japan)

TECHNICAL EDITORS

Kadek Karang Agustina (Udayana University, Indonesia)
I Wayan Nico Fajar Gunawan (Udayana University, Indonesia)
Putu Henrywaesa Sudipa (Udayana University, Indonesia)
I Made Merdana (Udayana University, Indonesia)

PUBLISHER
Institute for Research and Community Service Udayana University
Campus of Bukit Jimbaran, Badung, Bali.
Email: jvas@unud.ac.id
SCOPE OF JOURNAL

Journal of Veterinary and Animal Sciences (JVAS) with pISSN 2550-1283 is a peer-reviewed journal which devoted to the advancement and dissemination of scientific knowledge concerning veterinary and animal science which includes research findings, case report, experimental design, and their application for the treatment of diseases in birds, wild and domestic animals. This journal published in English twice a year on February and August by Institute for Research and Community Service, Udayana University. It covers all the scientific and technological aspects of veterinary medicine in general, anatomy, physiology, biochemistry, pharmacology, microbiology, pathology, public health, parasitology, infectious diseases, clinical sciences, biotechnology, alternative veterinary medicine and other biomedical fields. In the field of animal science, the journal receives original manuscripts covering breeding and genetics, reproduction and physiology, nutrition, feed sciences, animal products, biotechnology, behavior, livestock farming system, socio-economic, and policy.

ABOUT JOURNAL

Journal of Veterinary and Animal Sciences (JVAS) is a scientific journal published since 2017. The journal consistently two times a year in February, and August. The journal is registered in DOAJ. JVAS already used Cross Check to prevent any suspected plagiarism in the manuscripts.

SECRETARIAT OF JVAS

Institute for Research and Community Service, Udayana University
Bukit Jimbaran, Badung, Bali. Indonesia
Phone / Fax: +62-361-704622 / 703367
e-mail: jvas@unud.ac.id
Table of Contents

Original Article

Isolated Hemolysis Profile of Streptococcus Sp. Isolation Result from Swine’s Tonsil In Slaughter House at Punggul and Bongkasa Village
Carene Naomi, I Wayan Suardana, I Nyoman Suarsana

Hemolytical Profile Of Streptococcus Sp from Nasal Swab Isolation at Traditional Farm In Bongkasa Village, Abiansemal Subdistrict, Badung Regency, Bali.
Ni Luh Made Siska Yanti, I Wayan Suardana, I Gusti Ketut Suarjana

Selection of Bali Cattle as a Bull in Nusa Penida Island-Bali Based on Its Performance and Breeding Value
Dewi Ayu Warmadewi, I N Ardika, Putra, IGAA

Bovine Immunoglobulin E Levels of Bali Cattles in Bangli and Nusa Penida Island Bali Province, Indonesia
I Ni Ketut Suwiti, Luh Gde Sri Surya Heryani, Desak Nyoman,
Dewi Indira Laksni, Ni Nyoman Werdi Susari, I Nengah Kerta Besung

Detection of Antibiotic Residues in Chicken Eggs at The Chicken Egg Farmers and Egg Distributors on Trading Business in Denpasar Municipality
Maria Clafita Witoko, I Wayan Suardana, Mas Djoko Rudyanto

Residue of Tetracycline and Penicillin Antibiotic On Pork In Denpasar Bali
Siswanto Siswanto, I Nyoman Sulabda
Detection Of Antibiotic Residues In Chicken Eggs At The Chicken Egg Farmers And Egg Distributors On Trading Business In Denpasar Municipality

Maria Clafita Witoko¹, I Wayan Suardana², Mas Djoko Rudyanto².

¹Veterinary Medicine Student, ²Department of Veterinary Public Health

Faculty of Veterinary Medicine, Udayana University
PB Sudirman, Denpasar, Bali, Indonesia 80234
Tel: +62 361 223791; Fax: +62 362 223791

*Corresponding author: clafitawitoko@gmail.com

Abstract. Antibiotic residues often found in food animal due to antibiotic usage for prevention and medication of diseases in livestock. The usage of antibiotics as growth promoter also often done by farmers to increase feed efficiency and enhance livestock’s growth, producing larger and heavier livestock that are more profitable. Food animal that contains antibiotic residues are neither safe nor qualified as human consumption. The objective of this research was to detect antibiotic residues in chicken eggs at chicken egg farmers and egg distributors in Denpasar, Bali. In order to determine antibiotic residues, a total of 24 chicken egg samples were randomly collected from farmers and distributors, followed by testing with bioassay method. The result showed that 13 out of 18 samples collected from farmers and 1 out of 6 samples collected from distributors were tested positive for antibiotic residues. Most of the tested positive samples contained aminoglycosides residue (66.7% on eggs collected from farmers), followed by tetracycline residue (44.4% on farmers egg and 16.7% on distributors egg) and macrolide residue (16.7% on farmers egg).

Keywords: antibiotic residues, food safety, food security, AMR

I. INTRODUCTION

Animal protein is important for human health because of its amino acid that composes the protein that needed by human [1]. Egg is more affordable compared to meat and are easily obtained; thus, egg is an animal-originated food that has become main source of protein for human. Animal food products that are not well managed can harm human health, known as hazard in food that can threaten animal food safety such as animal diseases, food borne diseases, and chemical contamination like antibiotic residues [2].

Antibiotic residues often found in food animal due to antibiotic usage for prevention (prophylactic purpose) and medication of diseases in livestock. The usage of antibiotics as growth promoter also often done by farmers to increase feed efficiency and enhance livestock’s growth [3]. Food animal that contains antibiotic residues are neither safe nor qualified as human consumption. The use of antibiotics carried out by farmers raise worry among the public health for the accuracy of the dosage and withdrawal time is not guaranteed, resulting the deposition of antibiotics in animal tissues [3]. Antibiotic residues can be found in
all animal food products including egg and milk [4].

Antibiotic residues can cause pathological effects in human health such as allergy reaction, carcinogenetic, autoimmunity, mutagenicity, hepatotoxicity, reproductive disorders, bone marrow toxicity, nephropathy, immunopathological effects, and transfer of antibiotic resistant bacteria to the human [4]. According to European Centers for Disease Control (ECDC), approximately 25,000 people died from pathogens that are resistant to antibiotics. Whereas in Indonesia, according to the Ministry of Health of the Republic of Indonesia, the mortality rate due to antibiotic resistance until 2014 amounted to 700,000 mortality per year. The danger posed by antibiotic resistance is also influential in the economy, namely the rejection of meat exports to foreign countries, which affect the economies of exporting countries [5]. Antibiotic residues can occur at the farmer level and continue to be carried in the eggs circulating in the market, therefore this antibiotic residue research is carried out.

II. RESEARCH METHODS

Egg Sampling Procedures

This research used Golden Comet chicken eggs. The number of samples used in this study was 24 egg samples. Samples were taken from 3 farmers in Tabanan district, Bali, Indonesia and 3 chicken egg distributors who distributed the eggs in the city of Denpasar. A sample consisting of four one-day-old eggs were randomly collected from each farmer on the 1st, 7th, and 14th day and once more repeated after the first cycle collection completed. Differ from the farmers; egg samples collected from distributors were taken within 2 weeks, where 1 sample collected from each distributor per week.

Bioassay Screening Test

Bioassay screening test (SNI 7424:2008) represented four classes of antibiotics, namely Penicillin, Tetracycline (oxytetracycline), Aminoglycoside (kanamycin), and Macrolide (tilosin). Each class of antibiotics used different bacteria, agar medium ingredients, and incubation temperatures. The test considered positive when the surface surrounding the paper disc containing the test solution is clear. This test was performed triple where two coincident results considered positive. Details are described in Table 3.

Sample Preparation

The egg sample was weighed up to as much as 10 g then added 20 ml phosphate buffer no. 2 (6.4 g KH$_2$PO$_4$ and 18.9 g Na$_2$HPO$_4$ mixed with distilled water to attain 1000ml, pH set to 7.0 ± 0.1), homogenized using a homogenizer and then centrifuge 3,000 rpm for 10 minutes. The supernatant was taken and used as a test solution.

<table>
<thead>
<tr>
<th>TABLE 3. COMPOSITION OF BIOASSAY THAT PERFORMED</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bioassay</td>
</tr>
<tr>
<td>----------------</td>
</tr>
<tr>
<td>Penicillin (penicillin)</td>
</tr>
<tr>
<td>Tetracycline (oxytetracycline)</td>
</tr>
<tr>
<td>Aminoglycoside (kanamycin)</td>
</tr>
<tr>
<td>Macrolide (tilosin)</td>
</tr>
</tbody>
</table>
III. RESULTS AND DISCUSSION

Bioassay test (SNI 7424: 2008) was carried out on 24 egg samples taken from farmers and distributors to detect antibiotic residue. The test results are presented in Table 5, Table 6, and Table 7.

TABLE 5. ANTIBIOTIC RESIDUE TEST RESULTS ON EGGS FROM FARMERS

<table>
<thead>
<tr>
<th>Egg Origin</th>
<th>Sampling</th>
<th>Antibiotic Class</th>
<th>Total Positive per Farmer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Farmer 1</td>
<td>1</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>+</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>+</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>+</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>5</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>6</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Farmer 2</td>
<td>1</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>3</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>4</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>5</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>6</td>
<td>+</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Farmer 3</td>
<td>1</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>2</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>3</td>
<td>+</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>5</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>6</td>
<td>+</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

(+) : positive for antibiotic residue, (-) : negative for antibiotic residue, Am: Aminoglycoside, Te: Tetracycline, Pe: Penicillin, Ma: Macrolide

The result showed that 13 out of 18 samples collected from farmers and 1 out of 6 samples collected from distributors were tested positive for antibiotic residues. Most of the tested positive samples contained aminoglycosides residue (66.7% on eggs collected from farmers), followed by tetracycline residue (44.4% on farmers egg) and 16.7% on distributors egg) and macrolide residue (16.7% on farmers egg). All tested samples showed negative results for penicillin because its usage starts to subside. Penicillin can cause hypersensitivity in some animals [6].

TABLE 6. ANTIBIOTIC RESIDUE TEST RESULTS ON EGGS FROM FARMERS

<table>
<thead>
<tr>
<th>Egg Origin</th>
<th>Sampling</th>
<th>Antibiotic Class</th>
<th>Total Positive per Distributor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Distributor 1</td>
<td>1</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Distributor 2</td>
<td>1</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Distributor 3</td>
<td>1</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>+</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

(+) : positive for antibiotic residue, (-) : negative for antibiotic residue, Am: Aminoglycoside, Te: Tetracycline, Pe: Penicillin, Ma: Macrolide

TABLE 7. PERCENTAGE OF POSITIVE RESULT PER CLASS OF ANTIBIOTICS

<table>
<thead>
<tr>
<th>Antibiotic Class</th>
<th>Farmers</th>
<th>Distributors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aminoglycoside</td>
<td>66.7%</td>
<td>0%</td>
</tr>
<tr>
<td>Tetracycline</td>
<td>44.4%</td>
<td>16.7%</td>
</tr>
<tr>
<td>Macrolide</td>
<td>16.7%</td>
<td>0%</td>
</tr>
<tr>
<td>Penicillin</td>
<td>0%</td>
<td>0%</td>
</tr>
</tbody>
</table>

Discussion

Chowdhury et al., (2015) detected tetracycline residue in 25% commercial poultry farm and 7% in local scavenging. In Indonesia, Utari et al., (2018) did screening tests using active chicken egg samples that
were randomly collected from various province in Indonesia and found that in 2017 as much 0.75% of the samples were positive for aminoglycoside residue, 0.13% positive for tetracycline residue and macrolide. The positive results refer to the main causative factor, which is the irrationally use of antibiotics [2][7][8][9]. This lot of positive results raises concerns about the health of people who consume eggs.

Based on the questioner that was given to the farmer, all 3 farmers did not apply withdrawal time period when the animal was under antibiotic treatment. On the other hand, farmer 3 does different feeding, where the samples taken from there showed more positive results compared to the other two farmers. According to Muaz et al (2018), antibiotic administration in poultry is divided into three categories, namely therapeutic to treat bacterial infections, prophylactic to prevent disease, and growth promoters (AGP) to enhance the growth rate. The administration of antibiotics as AGP is applied through feed to all the animals in a long period of time but the dosage given is less than the therapeutic purpose; therefore, longer withdrawal time period is required. Mund et al (2016) explained that the continuously usage of veterinary drugs, including antibiotics, with doses that are not appropriate and not followed by withdrawal time increases the possibility of drugs’ residue deposition in animal’s edible tissue, including egg. However, some samples tested negative for antibiotic residues. This could happen because each animal has different metabolic rate. The enzyme systems that play role in drug metabolism, cytochrome P-450 (CYP450), have different rate from one individual to another. In addition, aging could reduce the liver’s capacity for metabolism through CYP450 [10].

In general, antibiotics are safe to use in medicine for animals and humans. Nevertheless, improper use of antibiotics such as inaccurate dosage or use of antibiotics as a prevention and not treatment could instigate health problems. Antibiotic residue in animal-originated food that exceeds its maximum residue limit (MRL) has become a concern to the public health [11]. Existence of it in animal-originated food can cause allergy reaction, chronic toxicology, mutagenic, carcinogenic, reproductive abnormalities and weakness of fetus development, hepatotoxicity, bone marrow toxicity, nephropathic and disruption of normal flora in digestive system [4][7][11].

Bacteria have several resistance mechanisms to antibiotics for their survival. Resistance mechanism is a complex mechanism, differs from one bacterium to another, it also influenced by the class of antibiotics that being used [12]. The mechanism of resistance includes efflux system, limiting access to antibiotics by bacterial cell walls, the use of enzymes to destroy or damage antibiotics, the occurrence of target mutations from antibiotics and mutations of ribosomes that produce new proteins so that antibiotics do not recognize them [13]. Lin et al., (2015) suggests that there are many efflux systems used by bacteria for they have many different genomics. A transcriptional regulator that can suppress or activate genes transcription controls the efflux system.

Several mechanisms of aminoglycoside resistance are modification of aminoglycoside by bacteria-produced enzymes or called aminoglycoside-modifying enzymes (AMEs), ribosome mutation that prevent the drug to bind, and rejection from inside the cell by active efflux system. The most common mechanism is modification of aminoglycoside by the AMEs. Three class of known AMEs are acyl-coenzyme A-dependent acetyltransferases (AAC), nucleoside triphosphate-dependent nucleotidyl transferases (ANT), and nucleoside triphosphate-dependent phosphotransferases (APHs). These enzymes along with other mechanism works
to inactivate aminoglycoside [12][14]. The repeated use of aminoglycosides will regulate the chromosomes to encode the multidrug efflux system [15].

Tetracycline resistance has a similar mechanism to aminoglycoside resistance. Bacteria resistant to tetracycline have feature such as tetracycline-specific efflux that can pumps out tetracycline out of the cell, ribosome mutation binding-site, and also usage of bacteria-produced enzymes to change or destroy the drug called tetracycline-modifying enzymes. Another resistance mechanism is by using proteins that protects ribosomes. These proteins are called tetracycline ribosomal protection proteins (RPPs) work specifically to release tetracycline from ribosome membrane [16][17].

Fyfe et al. (2016) explained macrolide resistance mechanism includes several mutations carried out by bacteria to modify ribosomes such as 23S rRNA mutations, ribosomal proteins mutations, and erm genes that mediates additional of methyltransferases on 23S rRNA. Macrolide resistance also has efflux system and enzymatic inactivation by macrolide esterases and macrolide phosphotransferase.

Antibiotic residues also contaminate environment, cause structural and abundance change of the soil, disturbing the environmental microbes. The most dangerous effect is the development of resistant bacteria to antibiotic and its transfer to consumers. Environmental bacteria can also transform into resistance in the event it constantly exposed by antibiotic residue [18]. The occurring development of antibiotic resistance genes in bacteria is reported because antibiotics are used too often throughout the world, especially in livestock [8][18].

Resistant bacteria can contaminate environment through livestock’s feces and urine [18][19]. According to Centers for Disease Control and Prevention (CDC) data in 2013, as much as 18 antibiotic-resistant bacteria have been detected. These bacteria are Clostridium difficile, Carbapenem-Resistant Enterobactericeae (CRE), Neissera gonorrhoeae, Multidrug-Resistant Acinobacter, Drug-Resistant Campylobacter, Extended Spectrum b-Lactamase (ESBL) producing Enterobactericeae, Vancomycin-Resistant Enterococcus (VRE), Drug-Resistant Non-Typhoidal Salmonella, Drug-Resistant Shigella, Methicillin-Resistant Staphylococcus Aureus (MRSA), Stereptococcus Pneumoniae, Drug-Resistant Tuberculosis.

In contrast to egg samples from farmers, samples collected from distributors showed less positive result. This can occur due to possible heat factor obtained during transportation and in storage room of these eggs. According to research conducted by Mosha (2017), the residual levels of tetracycline in tested egg samples were reduced after boiling eggs at temperature of 85-95°C for 10 minutes and fried at temperature of 110-130°C for 2 minutes. The degradation happened because tetracycline has structure that is not stable when heated. Temperature and duration of heating are the most important factors in residual degradation of tetracycline. This also applies to penicillin and macrolide residues [20]. Up to date, the stability of aminoglycoside residue is not known precisely [18]. Study done by Mahmoud et al (2015) showed loss of gentamicin residue in chicken meat after being boiled and fried for 10 minutes. Antibiotic residue degradation occurs due to the transfer of residue from chicken to cooking media such as water and oil. The usage of aminoglycoside in animal feed has been banned in several countries. Aminoglycoside has prolonged post-antibiotic effect (PAE) [21]. Beside temperature and heating duration, other factors such as pH, food matrix, and cooking procedure plays role in antibiotic residues degradation in eggs or other animal-originated food [22].
IV. CONCLUSION

Total positive samples for antibiotic residue were 14 out of 24 samples. Antibiotic residues at the distributors were less compared to farmers. Detection of antibiotic residue proves that irrational use of antibiotics in livestock is still happening. Lack of withdrawal time period in under-antibiotic-treatment animal also contribute to this detection.

Supervision of veterinary drugs usage, especially antibiotics, needs an improvement. Increasing awareness of the importance of withdrawal time to the farmers will contribute much in providing better animal food to the consumers. Further research and data collection need to be carried out to determine the exact cause of the change in positive samples at distributors. In addition, usage of nonAGP products in animal feed can be used as an alternative.

REFERENCES

