OPEN ACCESS

Now Indexed in SCOPUS, EBSCO, CHEMICAL ABSTRACT, ProQuest, CABI, AGRICOLA & WORLD ISLAMIC SCIENCE CITATION, MYCITE CITATION Report

SUBMIT YOUR MANUSCRIPTS - http://mc.manuscriptcentral.com/upm-ifrj

ISSN (Print): 1985 4668
ISSN (Online): 2231 7546

The International Food Research Journal (IFRJ) publishes papers in English, six (6) issues a year with the coverage of:

- Food Science and Technology
- Nutrition and Dietetics
- Agriculture, multidisciplinary
- Chemistry, multidisciplinary

The scope of the Journal includes:

- Food Science, Food Technology and Food Biotechnology
- Product Development and Sensory Evaluation
- Food Habits, Nutrition, and Health
- Food Safety and Quality
- Food Chemistry, Food Microbiology, Food Analysis and Testing
- Food Engineering
- Food Packaging
- Food Waste Management
- Food Entrepreneur
- Food Regulatory
- Post-Harvest Food Management
- Food Supply Chain Management
- Halal Food and Management

© 2008 IFRJ, Faculty of Food Science & Technology, UPM.
EDITORIAL BOARD

Editor-in-Chief
Dr. Jinap Selamat
Professor
International Food Research Journal (IFRI)
Food Safety Research Centre (FOSREC)
Faculty of Food Science & Technology Universiti Putra Malaysia.

Editor/Associate Editors

Dr. Son Radu
Professor
Department of Food Science
Faculty of Food Science and Technology
Universiti Putra Malaysia
43400 UPM, Serdang, Selangor, MALAYSIA

Dr. Nazamid Saari
Professor
Department of Food Science
Faculty of Food Science and Technology
Universiti Putra Malaysia
43400 UPM, Serdang, Selangor, MALAYSIA

Dr. Tan Chin Ping
Professor
Department of Food Technology
Faculty of Food Science and Technology
Universiti Putra Malaysia
43400 UPM, Serdang, Selangor, MALAYSIA

Board Members

Dr. Abd. Karim Alias
Professor
School of Industrial Technology
Universiti Sains Malaysia
11800 USM, Pulau Pinang MALAYSIA

Dr. Mohd Yazid Abdul Manap
Professor
Faculty of Food Science and Technology
Universiti Putra Malaysia
43400 Serdang, Selangor MALAYSIA

Dr. Karamatollah Rezaei
Professor
Faculty of Agricultural and Engineering Technology
College of Agriculture and Natural Resources
University of Tehran, Karaj IRAN

Dr. Olga Martin-Belloso
Professor
Department of Food Technology
University of Lleida Alcalde Rovira Roure,
191 Lleida 25198 SPAIN

Dr. Erwin Wasowicz
Professor
Poznan University of Life Sciences
Faculty of Food Science and Nutrition
Institute of Food Technology of Plant Origin
Research Unit of Food Concentrates
Wojska Polskiego 31,
60-624 Poznan POLAND

Dipl.-Ing. Jochen Weiss
Professor
Department of Food Science and Biotechnology
University of Hohenheim
Garbenstrafe 21
70599 Stuttgart GERMANY

Dr. Gulum Sumnu
Professor
Department of Food Engineering
Middle East Technical University TURKEY

Dr. Stefan Kasapis
Professor
School of Applied Sciences, RMIT University
LaTrobe Street, Melbourne,
VIC 3000 AUSTRALIA
Mini Review

1. **Plant-derived foods containing polyphenols with endothelial protective effects.**
 - Mokhtar, S. S. and Rasool, A. H.

Original articles

2. **Optimization of process for the preparation of antioxidant rich ginger candy by response surface methodology**
 - Radhika., Kumar, V., Vyas, G. and Kaur, S.

3. **Phenolic compound, anthocyanin content, and antioxidant activity in parts of purple waxy corn across maturity stages and locations**
 - Mohamed, G., Lertrat, K. and Suriharn, B.

4. **Antioxidant and anti-inflammatory activities evaluation of Coriaria from the North of Morocco**
 - Hafsé, M., Farah, A., Mouktadir, J.E. and Fikri-Benbrahim, K.

5. **Effect of oven and microwave drying on phenolic compounds and antioxidant capacity of coriander leaves**
 - Hihat, S., Remini, H. and Madani, K.

6. **Total phenolic content and antioxidant capacity of beans: organic vs inorganic**
 - Hanis Mastura, Y., Hasnah, H. and Dang, T.N.

7. **Comparative study of organic solvents and extraction conditions on color and antioxidant capacity in red cabbage**
 - Junka, N., Rattanamechaiskul, C., Wongs-Aree, C. and Kanlayanarat, S.

8. **Antioxidant effect of rosemary extract and BHT on the quality of coated Escolar (Lipidocybium flavobrunium) fish fillets during frozen storage**
 - Sarabi, M., Keramat, J. and Kadivar, M.

9. **Study on physico-chemical properties, antioxidant activity and shelf life of carrot (Daucus carota) and pineapple (Ananas comosus) juice blend**

10. **Kombucha for healthy living: evaluation of antioxidant potential and bioactive compounds**
 - Lobo, R.O., Dias, F.O. and Shenoy, C.K.

11. **Phytochemical profiling of the leaves of Brassica juncea L. using GC-MS**
 - Sharma, A., Kumar, V., Kanwar, M.K., Thukral, A.K. and Bhardwaj, R.

12. **Germination process increases phytochemicals in corn**
 - Chalorcharoeyning, W., Lomthaisong, K., Suriharn, B. and Lertrat, K.

13. **Effects of ‘Queen’ and ‘Smooth cayenne’ pineapple fruit core extracts on browning inhibition of fresh-cut wax apple fruit during storage**
 - Supapvanich, S., Mitsang, P. and Srinorkham, P.

14. **Optimization of enzymatic protein hydrolysis conditions on Angiotensinconverting enzyme inhibitory (ACEI) activity from blood cockle (Anadara granosa) meat**
15. Bioactivity of enzymatically prepared eel (Monopterus sp.) protein hydrolysate at different molecular weights
 - Aishah, S., Amiza, M.A., Sarbon, N.M. and Effendy, W.A.M.

16. Functional, thermal, and physicochemical properties of proteins from Argentine croaker (Umbrina canosai) recovered by solubilization/precipitation or a washing process
 - Azemi, W.A.W.M., Samsudin, N.A., Halim, N.R.A. and Sarbon, N.M.

17. Effects of multi-stage dehumidified-air drying on the polyphenol content of Hydrocotyle bonariensis
 - Go, S.K., Chia, S.L., Tan, C.P. and Chong, G.H.

18. Extraction and characterisation of pectin from two apple juice concentrate processing plants
 - Gazala, K., Masoodi, F.A., Masarat, H.D., Rayees, B. and Shoib, M.

19. Elemental composition of selected edible seaweeds using SEM-energy dispersive spectroscopic analysis
 - Reka, P., Thahira Banu, A. and Seethalakshmi, M.

20. Modelling and optimization of processing variables of snack (kokoro) produced from blends of maize and African yam bean seed flour
 - Idowu, A.O. and Aworh, O.C.

21. Effect of drying method on nutritional composition, sensory and antimicrobial properties of Ginger (Zingiber officinale)
 - Ajayi, O.A., Ola, O.O. and Akinwunmi, O.O.

22. Ultrasonic-assisted extraction of protein from rapeseed (Brassica napus) meal: Optimization of extraction conditions and structural characteristics of the protein
 - Yagoub, A.A., Ma, H. and Zhou, C.

23. 1-methylcyclopropene treatment and storage conditions delay the ripening of plantain fruit while maintaining sensory characteristics of ampesi, the boiled food product
 - Hagan, L.L., Johnson, P.N.T., Sargent, S.A., Huber, D.J. and Berry, A.

24. Pre-storage salicylic acid treatment affects functional properties, unsaturated/saturated fatty acids ratio and chilling resistance of potato during cold storage
 - Sayyari, M., Valero, D. and Serrano, M.

25. Texture and microstructure of reduced-salt Cheddar cheese as affected by process modifications
 - Sheibani, A., Ayyash, M.M., Vasiljevic, T. and Mishra, V.K.

26. Compositional and structural analysis of epicarp, flesh and pitted sample of Doum fruit (Hyphaene thebaica L.)

27. Development of peanut and chickpea nut brittle (Chikki) from the incorporation of sugar, jaggery and corn syrup
 - Tidke, B., Sharma, H.K. and Kumar, N.

28. Lipid-lowering efficacy and safety of Monascus biopigment beverage
 - Reginio, F.C., Jr., Hurtada, W.A., Estacio, M.A.C. and Dizon, E.

29. Functional properties of gluten-free gathotan noodle: lipid profile and satiety power
 - Gazala, K., Masoodi, F.A., Masarat, H.D., Rayees, B. and Shoib, M.
30. Compositional and nutritional studies on two wild mushrooms from Western Ghat forests of Karnataka, India
 - Purwandari, U., Bimantara, M.A. and Hidayati, D.

31. Nutritional profile of Rabbitfish (Siganus spp.) from the Kepulauan (Thousand Islands), Jakarta, Indonesia
 - Ravikrishnan, V., Sanjeev Ganesh and Madaiah Rajashekhar

32. Evaluation of the parameters affecting the extraction of sesame oil from sesame (Sesamum indicum L.) seed using soxhlet apparatus

33. Fatty acid characterisation, sterol composition and spectroscopic analysis of selected Cucurbitaceae seed oils

34. Sensory evaluation of probiotic whey beverages formulated from orange powder and flavor using fuzzy logic

35. Levels of selected metals in commercially available rice in Ethiopia
 - Tegegne, B., Chandravanshi, B.S. and Zewge, F.

36. Effect of maltodextrin and storage time on overall quality of wheat grass fortified rice cake
 - Das, A., Ray, S., Raychaudhuri, U. and Chakraborty, R.

37. Comparison of vitamin C content in citrus fruits by titration and high performance liquid chromatography (HPLC) methods
 - Fatin Najwa, R. and Azrina, A.

38. Profile of aroma compounds and acceptability of modified tempeh
 - Kustyawati, M.E., Nawansih, O. and Nurdjanah, S.

39. Changes in pH and colour of watermelon juice during ohmic heating
 - Ishita, C. and Athmaselvi, K.A.

40. Confusion determination of critical control point (CCP) via HACCP trees
 - Mohd Bakri, J., Maarof, A.G. and Norazmir, M.N.

41. Dioxins and dioxin-like polychlorinated biphenyls in seafood: dietary intake amongst Malaysian adult populations and its association with sociodemographic factors
 - Leong, Y.H. and Majid, M.I.A.

42. Economic analysis of broiler production in Peninsular Malaysia
 - Abdurofi, I., Ismail, M.M., Kamal, H.A.W. and Gabdo, B.H.

43. Factors influencing purchase intention of organic meat among consumers in Klang Valley, Malaysia
 - Wong, S.S. and Aini, M.S.

44. Effects of extraction conditions on yield, total phenolic contents and antibacterial activity of methanolic Cinnamomum zeylanicum Blume extract
 - Ida Madiha, Y., Rukayadi, Y. and Norhafiz, H.

45. Role of protective agents on the viability of probiotic Lactobacillus plantarum during freeze drying and subsequent storage
 - Savedboworn, W., Kerdwan, N., Sakorn, A., Charoen, R., Tipkam, and Pattayakorn, K.
46. The effect of two Lactobacillus rhamnosus strains on the blood lipid profile of rats fed with high fat containing diet
 o Nocianitri, K.A., Antara, N.S., Sugitha, I.M., Sukrama, I.D.M., Ramona, Y. and Sujaya, I.N.

47. Statistical optimization of bacteriocin produced from Lactobacillus delbrueckii subsp bulgaricus isolated from yoghurt
 o Radha, K.R. and Padmavathi, T.

48. The antibacterial activities and chemical composition of extracts from Carica papaya cv. Sekaki/Hong Kong seed
 o Muhamad, S.A.S., Jamilah, B., Russly, A.R. and Faridah, A.

49. Evaluating the anti-obesity potential of Lactobacillus fermentum 4B probiotic strain isolated from balao-balao, a traditional Philippine fermented food

50. Nutritional quality of Moringa oleifera for its bioactivity and antibacterial properties
 o Chelliah, R., Ramakrishnan, S. and Antony, U.

51. Wild edible macrofungi consumed by ethnic tribes of Tripura in Northeast India with special reference to antibacterial activity of Pleurotus djamor (Rumph. ex Fr.) Boedijn
 o Roy Das, A., Saha, A.K., Joshi, S.R. and Das, P.

52. Floressent in situ hybridization (FISH) method for quantification colonic microbiota Sprague Dawley rats with diet containing inulin from lesser yam tubers (Dioscorea esculenta L.)
 o Winarti, S., Harmayani, E., Marsono, Y. and Pranoto, Y.

53. Bacteriological quality and occurrence of some microbial pathogens in goat’s and ewe’s milk in Egypt
 o Ombarak, R.A. and Elbagory, A.M.

54. Antimicrobial activity of Lactobacillus plantarum strains isolated from different environments: a preliminary study

55. Fungal contamination of foods prepared in some hotels in the Kumasi metropolis
 o Darko, S., Mills-Robertson, F.C. and Wireko-Manu, F.D.

56. Identification and characterization of the Lactic Acid Bacteria isolated from Malaysian fermented fish (Pekasam)
 o Ida Muryany, M.Y., Ina Salwany, M.Y., Ghazali, A.R., Hing, H.I., Fadilah, R.

57. Widespread acquisition of antimicrobial resistance of Klebsiella pneumoniae isolated from raw milk and the effect of cinnamon oil on such isolates
 o Abdel Hameed, K.G.

58. Isolation and identification of Listeria spp. in chicken carcasses marketed in northeast of Iran
 o Zeinali, T., Jamshidi, A., Bassami, M. and Rad, M.

59. Distribution of bacteriophages in food and environment samples
Short Communication

60. Characterization of essential oil content isolated from Rhus flexicauli

61. Nisin production conditions optimization and its effect on Bacillus coagulans
 Listeria monocytogenes
 o Malas, B., Mohamad, M. and Yazji, S.

62. Physiological compatibility of zinc fortified apricots through sodium caseinate
 based edible coating
 o Iahtisham-Ul-Haq, Butt, M.S., Randhawa, M.A. and Shahid, M.
The effect of two Lactobacillus rhamnosus strains on the blood lipid profile of rats fed with high fat containing diet

by Komang Ayu Nocianitri
The effect of two *Lactobacillus rhamnosus* strains on the blood lipid profile of rats fed with high fat containing diet

1,6 Nociantini, K.A., 2 Antara, N.S., 1 Sugitha, I. M., 3 Sukrama, I. D. M., 6 Ramona, Y. and 5,6 Sujaya, I. N.

1 Department of Food Science and Technology, Faculty of Agricultural Technology, Udayana University, Indonesia, Bali 80362, Indonesia
2 Department of Industrial, Agricultural Technology, Faculty of Agricultural Technology, Udayana University, Bali 80362, Indonesia
3 Department of Microbiology, Faculty of Medicine, JI. PB Sudirman, Badung Bali 80362, Indonesia
4 Department of Biology, Faculty of Science, Bakti Jimbaran Campus, Badung Bali 80362, Indonesia
5 School of Public Health, Faculty of Medicine, JI. PB Sudirman, Badung Bali 80362, Indonesia
6 Integrated Laboratory for Bioscience and Biotechnology, Udayana University, Bali 80362, Indonesia

Abstract

Diet pattern and lifestyle of modern society has triggered various diseases associated with hypertension and coronary heart disease. The main objective of this study was to investigate the effect of two probiotic lactobacilli strains (*Lactobacillus rhamnosus* SKG34 and *Lactobacillus rhamnosus* FBB42) isolated from different sources (fermented milk and feces of healthy infants), on the blood lipid profile of rats fed with high fat containing diet. The ability of these strains to reduce the cholesterol content of rats blood was also investigated in this study. Four groups of 6 rats were fed for 28 days with high fat containing diets (HF), high fat containing diets supplemented individually either with *L. rhamnosus* SKG34 or *L. rhamnosus* FBB42, and high fat containing diets supplemented with a combination of those strains. During these treatments, the amount of food intake and the body weight gain of rats were measured. On day 28, all rats were sacrificed and the population of lactic acid bacteria (LAB) in cecal content and lipid profile of rats were determined by dilution plating method on MRS agar and CHOD-PAP enzymatic method, respectively. The results showed that administration of probiotics, either singly or in combination, was found to increase the population of LAB and this resulted in a slight decrease in the pH of the cecal content (P<0.05). It was also found in this study that the probiotics *L. rhamnosus* SKG34 and *L. rhamnosus* FBB42, either applied singly or in combination, significantly lowered the total content of cholesterol, TG and HDL-c, but increased HDL-c in rats fed with high fat containing diet. Besides that, administration of *L. rhamnosus* SKG34 and *L. rhamnosus* FBB42 reduced (with equivalent results) the ratios of TC, HDL-c, TG, and LDL-c. HDL-c which are normally used as a predictor of cardiovascular diseases (CVD). This indicated that *L. rhamnosus* SKG34 and *L. rhamnosus* FBB42 are potential to be developed as probiotics to be used in improving blood lipid profiles.

Keywords

Probiotics
Lactobacillus rhamnosus
Lipid profiles
Cholesterol

Introduction

It was reported by the WHO (2014) that 17.5 millions people lost their life due cardiovascular related diseases. This number was about 31% of the total global death case. Among those, approximately 7.4 million of were caused by coronary heart disease and about 6.7 million were due to stroke (WHO, 2014). In the timeline period of 1999 and 2003, it was reported that the contribution of hypercholesterolemia on the heart attack case in western European countries and central and Eastern Europe countries were 45% and 35%, respectively (Yusuf *et al.*, 2004). The risk of heart attack in a person with hypercholesterolemia condition is three times greater than that with normal cholesterol condition. Further, it was stated that more than 75% of the reported death occurred in countries with mediocre income. This is closely associated with
the pattern of food consumption where people in such countries tend to consume high fat containing diets with low fiber content. High fat containing foods, especially those with high content of saturated fatty acids may increase blood cholesterol levels, risk of atherosclerosis, and coronary heart disease (Grundy et al., 1982; Xu et al. 2006). It was also reported that foods containing fat, salt and high sugar but low in complex carbohydrates, fruits, and vegetables increased the risk of cardiovascular disease (WHO, 2003). The incidence of CVD can normally be prevented through lifestyle improvements or by avoiding risk factors such as smoking, unhealthy food consumption, increased physical activity and alcohol abuse (WHO 2014). A decrease in blood cholesterol level has been one of the global concerns because high blood cholesterol level has a great contribution to the high rate of global mortality which is estimated WHO to reach 23.6 million cases in 2030 (Xie et al., 2011). Manson et al. (1992) reported that a decrease by 1% of the blood cholesterol level may lower the risk of CV 2-3%. An extensive studies conducted by the Cholesterol Treatment Trialists (CTT) Collaboration (2010) showed that a decrease in LDL level by 2-3 mmol/L could reduce heart attacks cases by 40-50%.

Chemical-based drugs have been used as a method to control blood cholesterol level. However, this method has been found to be costly and has negative effects for long-term application. Therefore, this is not an optimal way to control blood cholesterol level. Due to those situations, biological approach (such as consumption of probiotics or functional foods containing probiotics), which is cheap and safe in the long term application, has recently received a lot of scientist’s attention. The idea is based on the findings of Shaper et al. (1963) and Mann (1974) who reported that blood cholesterol level of people in Samburu tribe and the Masai warriors in Africa decreased following consumption of milk fermented with Lactobacillus. The decrease was allegedly caused by the Lactobacillus containing in the fermented milk, and this has lead many scientists to investigate various health aspects of probiotic, Lactobacillus in particular.

Probiotics are living microorganisms, when administered regularly in adequate amount, they will provide their hosts with health benefit (FAO, 2002). Probiotics have been well-known to have beneficial effects to human health by maintaining the balance of beneficial bacteria residing in the gastrointestinal tract of human (Fuller, 1989). Some beneficial effects of probiotics are prevention of diarrhea (Salazar et al., 2007; Pant et al., 2007; Collado et al., 2009), stimulation of hosts immune system (Isolauri et al., 2001; Isolauri and Salminen, 2008), prevention of colon cancers (Liong, 2008), prevention of atopic dermatitis in children (Betsi et al., 2008; Torii et al., 2010), having an antioxidant effect (Kim, 2006ab, Chu-Chyn et al., 2005; Sekhon, 2010; Gao, 2011), and lowering blood cholesterol levels (Lee et al., 2009; Ooi et al., 2010; Kumar et al., 2012).

A study conducted by Ha et al. (2006) reported that administration of probiotic L. plantarum CK102 was found to decrease the total cholesterol, HDL-c and TG in rats by 27.9%, 28.7% and 61.6%, respectively. Similarly, Jeun et al. (2010) also found that the administration of L. plantarum KCTC3928 in mice lowered the TC and 33% and HDL-c level by 42% and 32%, respectively. In contrast to those found by Ha et al. (2006), administration of L. plantarum KCTC3928 in mice was found to increase the HDL-c by 35%. Several studies on the effects of probiotics, applied in humans, on blood lipid profile showed various results. Bertolami et al. (1999) and Naruszewicz et al. (2002) found that probiotics could improve blood lipid profiles. However, Hatakka et al. (2008) and Simon et al. (2006) and Lewis and Burmeiser (2005) found that administration of probiotic L. rhamnosus LC705 (10⁹ cfu/g, 2 capsules per day) for 4 weeks, administration of L. fermentum 2×10⁹ cfu / capsule capsules a day for 10 days, and administration of L. acidophilus for 6 weeks, respectively did not affect the lipid profile in human subjects. These results showed initial indication that the effect of probiotics varied and supported the assumption that beneficial effect of probiotics is strain dependent and highly affected by its origin.

Based on those background it is worthy to study the hypocholesterolemic effect of the two Lactobacillus rhamnosus strains (L. rhamnosus SKG34 isolated from Sambawa horse milk and L. rhamnosus FBB42 isolated from anhealthy infant feces) for further development of their potential as probiotics.

Materials and Methods

Strain and cultivation methods

Two lactobacilli, L. rhamnosus SKG34 and L. rhamnosus FBB42 were obtained from the Udayana University Culture Collections, and used in this study. The lactobacilli were grown in the Man Regosa Sharpe broth (MRS, Pronadisa Laboratorios Conda SA C / La Forja 9. 28850 Torrejon de Ardoz, Madrid, Spain) containing: 20 g dextrose, 10 g bacteriological peptone, beef extract 8 g, 5 g sodium acetate, 4 g yeast extract, 2 g dipotassium phosphate, ammonium citrate 2 g, 1 g tween 80, 0.2 g magnesium sulphate.
and 0.06 g manganese sulphate per liter medium.
Amount of 50 μL glycerol stock of _L. rhamnosus_ SKG34 and _L. rhamnosus_ FBB42 were cultured into 5 ml MRS broth and incubated for 48 hours under anaerobic conditions (anaerobic gas generating Pouch, Oxoid) at 37°C. One loopful of culture broth was next streaked on to MRS agar (Pranadisa) and was further incubated in anaerobic condition at 37°C for 48 hours. A single colony was then isolated and used for further studies.

Preparation of probiotic cells

Lactobacillus rhamnosus SKG34 and _L. rhamnosus_ FBB42 were inoculated in 5 ml MRS broth medium, incubated statically at a temperature of 37°C for 24 hours, centrifuged at 5,000 rpm for 5 minutes at 5°C, and the supernatant was discarded. The cell mass was then washed twice with saline solution (NaCl 0.85%) and resuspended with saline to obtain bacterial cell density of approx. 10⁶ cfu/mL.

Preparation of rats

Twenty-eight male Wistar rats with initial body weight of 79.2 ± 15.1 g were acclimatized for 1 week and fed ad libitum with standard diet (AOAC, 1990), Table 1, in cages with a dimension of 45 cm x 30 cm x 10 cm. After acclimatization, the 24 rats were randomly selected and used for further studies. The rats were then fed with high fat containing diet (standard diet added with 10% lard) for 2 weeks. The rats were next divided into 4 groups of 6 rats and followed by administration with high-fat feed (HF), HF and _L. rhamnosus_ SKG34 (HF-SKG34); HF and _L. rhamnosus_ FBB42 (HF-FBB42) and HF and a combination of the two probiotics (_L. rhamnosus_ and _L. rhamnosus_ SKG34 FBB42; HF-SKG34-FBB42).

The rats were administered with probiotic orally by giving 0.5 ml of cells suspension (10⁷ cells/ml) using a syringe, once a day at 12:00 to 13:00 pm for 4 weeks (28 days). The body weight and the amount of diet consumed were measured daily. This study followed the ethical clearance of experimental animal used at the Udayana University.

Blood sampling

The rats were anesthetized using a mixture containing 10% ketamine and 2% xylazine analytical grade, KEPRO B.V., Holland. The blood was taken through the eyes of the rats (eye pit), put into Eppendorf tube and allowed to stand at ambient temperature for 45 minutes. The serum was obtained by centrifugation of the blood samples at 10,000 rpm, 5°C, for 30 min, and stored at -20°C until required. In the meanwhile, the content of the cecum were collected and diluted in saline solution(0.85% NaCl) prior to enumeration of LAB and measurement of pH.

Analysis of lipid profile

Total cholesterol (TC) of serum, high density lipoprotein-cholesterol (HDL-c) and triglyceride (TG) levels were measured by the method of CHOD-PAP enzymatic photometric test using a commercial KIT Brands DiaSys (DiaSys Diagnostic Systems GmbH A 15 Strasse 9 65 558 Holzheim Germany), while the low density lipoprotein-cholesterol (LDL-c) was obtained from calculation using a formula of LDL = TC - HDL - (TG/5) (Shrivastava et al., 2013).

Population of lactic acid bacteria in the cecum of rats

The population of LAB in the cecum was determined by dilution and spread plate on MRS agar. The cecum contents were removed, collected in a sterile tube, weight, and added in saline solution to obtained 2 times dilution factor. Subsequently, this suspension was further diluted to 10⁵ Suspensions with dilution factors of 10⁻¹-10⁻⁵ (0.1 ml each) were spread on MRS Agar medium supplemented with Bromo Cresol Purple (BCP) and incubated anaerobically for 24 hours at 37°C.

Measurement of pH of the cecum

The pH of the cecum was determined using a pH meter (TOA ion meter IM 408).

Statistical analysis

The data obtained in this experiment was analyzed using one way analysis of variance (ANOVA). This analysis was then continued using Duncan's multiple range tests when the value of significant difference was < 0.05 (p<0.05).

Results and Discussion

All rats in the treatment groups gained weight following administration either with high-fat containing diet or high-fat containing supplemented with probiotics, indicating that external factors
and the status of the animals were under normal conditions throughout the experiment. Therefore, any changes occurred during this study must be due to treatments applied in the study. The rat weight gain, total diets, and the amount of diets daily consumed are presented in Table 2.

The amount diet consumed per day and the body weight gain of rats after 28 days did not show significant differences (p > 0.05) among treatments. The administration of probiotic *L. rhamnosus* resulted in an increase in the population of LAB in the cecum of rats (Table 3), although it was not significant statistically (p > 0.05). The respective increase in LAB population in the rats cecum following administration of SKG34, FBB42, and the combination of SKG34 and FBB42 were 1.22, 1.16, and 1.28 times, respectively. This indicated that *L. rhamnosus* was capable to adapt and proliferate in the gastrointestinal tract of rats. The growth and the activity of the probiotic in the cecum slightly decreased the pH of the cecum. The lowest pH (pH 6.58) was detected in the cecum treated with FBB42 and with combinations of FBB42 and SKG34. This indicated that the two *L. rhamnosus* strains isolated from different origin survived and multiplied in the gastrointestinal tract of rats. This result is in line with that reported by Sujaya et al. (2008a) and Uni et al. (2012) who conducted in vitro studies on *L. rhamnosus* SKG34 (Sumbawa mare milk isolate) and *L. rhamnosus* FBB42 (infant stool isolate), in a model of digestive tract conditions. High-fat containing diets, especially those with high cholesterol and saturated fatty acid content, may increase blood cholesterol levels and cause a person to suffer from atherosclerosis (Grundy et al., 1982, Xu et al., 2006). In this study, administration of rats with diet containing 10% pig fat (without the presence of probiotics) for 2 weeks was found to increase the rat’s blood serum by 16.91%, (from 57.50 mg / dl to 67.22 mg / dl). This indicated that the pig fat containing saturated fatty acids and monounsaturated fatty acids (MUFA) had potency to increase blood cholesterol level. According to Rohlman et al. (2012) the main composition of fatty acids in pig fat (lard) are palmitic (20.66%), stearic (10.91%), oleic (39.13%) and linoleic acid (19.56%). Hypocholesterolemic properties of probiotics to reduce incidence of global problem in coronary heart diseases have received serious attention in the recent years. The use of chemical-based drugs to treat patients with high blood cholesterol level has been found to have some undesired side effects. Besides that they are unaffordable by many people. Therefore, application of probiotics seems to be preferable because they provide indirect effects by modulating and stimulating gut microbiota of rats/ humans or by affecting the metabolic pathways in human and animal bodies holistically.

Administration of probiotics to rats fed with high fat containing diet was found to affect their serum lipid profile. The total cholesterol level of rats serum (TC), HDL-c, LDL-c, and TG in the four groups following feeding with high fat containing diet without and with probiotic are shown in Table 3. As shown in Table 3 that the serum TC, HDL-c, LDL-c, and TG content of rats treated with high fat containing diet combined with probiotics (HF-SKG34, HF-FBB42, and HF-SKG34-FBB42) were statistically significant (P < 0.05) when compared to those fed with high fat containing diet only (HF treatment groups). However, within the groups treated with high fat containing diet in combination with probiotics (HF-SKG34, HF-FBB42, and HF-SKG34-FBB42), no significant different statistically was observed (p > 0.05). All probiotics were found to lower the content of TC, LDL-c, TG, but improved the level of HDL-c. When

Table 2. Total diet, food intake per day and body weight gain of rats fed with high-fat diet and *L. rhamnosus*

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Total food intake(g)</th>
<th>Food intake/day(g)</th>
<th>Body weight gain(g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>HF</td>
<td>1748±27.0 a</td>
<td>6.24±0.97 a</td>
<td>31.18±6.97 a</td>
</tr>
<tr>
<td>HF-SKG34</td>
<td>1762±26.7 a</td>
<td>6.29±0.96 a</td>
<td>33.42±12.7 a</td>
</tr>
<tr>
<td>HF-FBB42</td>
<td>1897±32.2 a</td>
<td>6.78±1.15 a</td>
<td>38.87±11.7 a</td>
</tr>
<tr>
<td>HF-SKG34-FBB42</td>
<td>1768±31.9 a</td>
<td>6.31±1.14 a</td>
<td>30.90±9.30 a</td>
</tr>
</tbody>
</table>

The values are expressed as means±SD
HF = High Fat Diet, HF-SKG34 = High Fat Diet with *L. rhamnosus* SKG34, HF-FBB42 = High Fat Diet with *L. rhamnosus* FBB42, and HF-SKG34-FBB42 = High Fat Diet with *L. rhamnosus* SKG34 and *L. rhamnosus* FBB42.

Table 3. Population of LAB and pH of the rats cecum content fed with high-fat diet and *L. rhamnosus*

<table>
<thead>
<tr>
<th>Treatment</th>
<th>cecum pH</th>
<th>LAB Total (CFU/g cecum)</th>
</tr>
</thead>
<tbody>
<tr>
<td>HF</td>
<td>6.64±0.07 a</td>
<td>2.48 x 10^6 a</td>
</tr>
<tr>
<td>HF-SKG34</td>
<td>6.60±0.06 a</td>
<td>2.93 x 10^6 a</td>
</tr>
<tr>
<td>HF-FBB42</td>
<td>6.57±0.04 a</td>
<td>2.78 x 10^6 a</td>
</tr>
<tr>
<td>HF-SKG34</td>
<td>6.38±0.05 a</td>
<td>3.06 x 10^6 a</td>
</tr>
</tbody>
</table>

The values are expressed as means±SD
HF = High Fat Diet, HF-SKG34 = High Fat Diet with *L. rhamnosus* SKG34, HF-FBB42 = High Fat Diet with *L. rhamnosus* FBB42, and HF-SKG34-FBB42 = High Fat Diet with *L. rhamnosus* SKG34 and *L. rhamnosus* FBB42.
Table 4. Blood lipid profile of rats fed with high-fat diet and *L. rhamnosus*

<table>
<thead>
<tr>
<th>Treatments</th>
<th>HF</th>
<th>HF-SKG34</th>
<th>HF-FBB42</th>
<th>HF-SKG34-FBB42</th>
</tr>
</thead>
<tbody>
<tr>
<td>TC (mg/dL)</td>
<td>74.28 ± 9.8 a</td>
<td>64.18 ± 7.54 b</td>
<td>62.23 ± 6.07 b</td>
<td>64.39 ± 9.07 b</td>
</tr>
<tr>
<td>TG (mg/dL)</td>
<td>40.15 ± 8.17 a</td>
<td>28.58 ± 5.27 b</td>
<td>31.82 ± 6.22 b</td>
<td>30.85 ± 6.06 b</td>
</tr>
<tr>
<td>HDL-c (mg/dL)</td>
<td>44.14 ± 7.20 a</td>
<td>52.10 ± 6.33 a</td>
<td>48.33 ± 5.42 ab</td>
<td>52.07 ± 4.44 a</td>
</tr>
<tr>
<td>LDL-c (mg/dL)</td>
<td>22.11 ± 6.11 a</td>
<td>6.36 ± 2.74 b</td>
<td>7.52 ± 4.65 b</td>
<td>5.15 ± 4.91 b</td>
</tr>
</tbody>
</table>

The values are expressed as means ± SD

a,b Mean values within a row with different letters differ significantly (p < 0.05, n = 6).

HF = High Fat Diet, HF-SKG34 = High Fat Diet with *L. rhamnosus* SKG34, HF-FBB42 = High Fat Diet with *L. rhamnosus* FBB42, and HF-SKG34-FBB42 = High Fat Diet with *L. rhamnosus* SKG34 and *L. rhamnosus* FBB42

compared to the HF treatment group, the HF-SKG34 reduced the TC, TG, and LDL-c by 13.60%, 28.82%, and 71.22%, respectively, but increased the HDL-c by 15.29%. A slightly better result was shown by the treatment group of HF-FBB42 which lowered TC, TG, and LDL-c by 16.22%, 20.76%, and 66.01%, respectively, but it increased the HDL-c by 8.71%. When these 2 probiotics were combined in a high fat containing diet, a decrease of TC, TG and LDL-c by 13.32%, 23.17%, and 72.18%, respectively was observed. In this treatment, the HDL-c value increased by 15.23%.

The results of this study showed that probiotics *L. rhamnosus* SKG34 and *L. rhamnosus* FBB42 appeared to improve the blood lipid profile of rats fed with high fat containing diet. Similar results were also reported by Ha et al. (2006); Jeun et al. (2010) and Ooi et al. (2010) who found the effectiveness of probiotics to improve lipid profile both in the *in vitro* and *in vivo* experiments. Administration of *L. rhamnosus* SKG34 and *L. rhamnosus* FBB42 clearly reduced the negative effects of saturated fatty acids and mono unsaturated (MUFA) contained in lard. Increase in risk of atherosclerosis indicated by the ratios of TG; HDL-c and LDL-c; HDL-c. These ratios have been often used as a predictor of atherosclerosis (da Luz et al., 2008). Our study (Table 4) showed that *L. rhamnosus* played an important role to lower the risk of atherosclerosis.

The mechanism by which the *L. rhamnosus* SKG34 and *L. rhamnosus* FBB42 in lowering cholesterol levels and improving lipid profiles is still unclear. However it is suspected to be due to the role of those probiotics to modulate the growth and the fermentative products of the intestinal microbiota of rats. Four mechanisms by which probiotics lowering the cholesterol level in the blood have been well documented. These include: (1) the ability of probiotic bacteria to assimilate the cholesterol molecules in the small intestine. In this case, the cholesterol will bind on membrane or cell wall of the probiotic during growth and therefore will result in a decrease in the absorption of cholesterol from the intestine to the blood (Brashears et al., 1998; Anderson and Gilliland, 1999; Kimoto et al., 2002); (2) the capability of probiotic microbes to enzymatically deconjugate bile acid using bile salt hydrolase (BSH). In the conjugated form, the bile acid will mostly dissolve so that only small portion is absorbed in the intestine, thus most is excreted through feces. The absorbed cholesterol will then be used to synthesize new bile acids (which is a homeostatic response), resulting in a decrease in serum cholesterol level (Brashears et al., 1998; Yazid et al., 1999); (3) conversion of cholesterol to coprostanol by cholesterol reductase of lactobacillus strains (Lye et al., 2010) and (4) products of lactobacilli fermentation process in the form of short chain fatty acids that can inhibit the synthesis of cholesterol in the body (Gilliland et al., 1985).

Previous studies conducted by Sujaya et al. (2008a) and Uni et al. (2012) showed that *L. rhamnosus* SKG34 and FBB42 were able to deconjugate glycochenolic acid (GDC). Besides that a decrease in the cholesterol level was suspected to be related to growth and the effect of the individual or combination fermentation process of the *L. rhamnosus* strains administered to the animals. Administration of *L. rhamnosus* SKG34 and *L. rhamnosus* FBB42 had a great contribution to increase the population of LAB in the cecum of rats, either as a result of administered probiotics or as a synergic effect of the probiotic to increases the indigenous LAB of the gastrointestinal tract of rats. As the LAB grow in the gastrointestinal tract, more acids, including short chain fatty acids (SCFAs), are produced and result in a slight decrease of the cecum pH. This acidic condition would cause precipitation...
of bile so that most of this cholesterol is excreted through the feces. The rest which is absorbed, is used to synthesis bile to replace the excreted one. Some phenomena may also occur synergistically in this study to result in a reduced cholesterol level and an improved lipid profile in rats serum.

Conclusion

It can be concluded from this study that L. rhamnosus SKG34 and L. rhamnosus FIB42 were found to be effective to manage lipid profile in serum by decreasing total cholesterol, TG, LDL-c and increasing HDL-c, indicating that these two strains have the possibility to be developed as potential probiotics to decrease incidence of arteriosclerosis and to prevent coronary heart disease (CVD).

Acknowledgments

We express our deepest gratitude to the Director General of Higher Education, the Ministry of National Education who provides a portion of financial support for this research through Competitive Grant Research Scheme with Contract Number of 175.76 / UN4.2 / PNL.01.03.00 / 2013. Our thank should also go to W. Nursini for her technical assistance throughout this study.

References

Kim, H.S., Jeong, S.G., Ham, J.S., Chae, H.S., Lee, J.M.

The effect of two Lactobacillus rhamnosus strains on the blood lipid profile of rats fed with high fat containing diet

originality report

% 10 similarity index
% 8 internet sources
% 10 publications
% 2 student papers

primary sources

1. e-sciencecentral.org
 Internet Source

2. bmccomplementalternmed.biomedcentral.com
 Internet Source

3. libir.tmu.edu.tw
 Internet Source

4. Submitted to October University for Modern Sciences and Arts (MSA)
 Student Paper

 Publication

thieme-connect.com

jbcr.in

www.ajas.info
<table>
<thead>
<tr>
<th>Source</th>
<th>Title</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>Internet Source</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>pdfs.semanticscholar.org</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>www.isca.in</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>abcm.org.br</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>www.njlm.net</td>
<td></td>
</tr>
</tbody>
</table>
Cholesterol Treatment Trialists' (CTT) Collaboration. "Efficacy and safety of more intensive lowering of LDL cholesterol: a meta-analysis of data from 170,000 participants in 26 randomised trials", The Lancet, 20101113/19

SHI, Tala, Keita NISHIYAMA, Koichi NAKAMATA, Ni Putu Desy ARYANTINI, Dai MIKUMO, Yuji ODA, Yuji YAMAMOTO, Takao MUKAI, I Nengah SUJAYA, Tadasu URASHIMA, and Kenji FUKUDA. "Isolation of Potential Probiotic Lactobacillus rhamnosus Strains from Traditional Fermented Mare Milk Produced in Sumbawa Island of Indonesia", Bioscience Biotechnology and Biochemistry, 2012.

B. Sánchez. "Identification of novel proteins
secreted by *Lactobacillus rhamnosus* GG grown in de Mann-Rogosa-Sharpe broth*, Letters in Applied Microbiology, 05/2009*