OVERVIEW OF EFFICACY, SAFETY AND PHYTOCHEMICAL STUDY OF
ANREDERA CORDIFOLIA (TEN.) STEENIS

Ni Putu Eka Leliqia¹³*, Elin Yulinah Sukandar¹, Irdi Fidrianny²,
¹Pharmacology-Clinical Pharmacy Research Group, School of Pharmacy, Bandung Institute of Technology, Indonesia
²Pharmaceutical Biology Research Group, School of Pharmacy, Bandung Institute of Technology, Indonesia
³Pharmacy Department, Faculty of Mathematics and Natural Sciences, Udayana University, Indonesia
*leliqia@gmail.com

Abstract

Anredera cordifolia (Ten.) Steenis is used for medical purposes. In this article, traditional usage, phytochemical content, pharmacology activity and toxicity test result of A. cordifolia will be summarized. Terpenoids, steroid, glycoside, flavonoids, saponins and alkaloids were found in A. cordifolia. Apart from that, some pure compounds such as ursolic acid, ancordin, apigenin, etc. were isolated from this plant. A. cordifolia was proven to have benefits in repairing kidney function, as antibacterial, antifungal, antivirus, protease inhibitor, xanthine oxidase inhibitor, antidiabetic, antihypertensive, vasodilator, diuretic, anti-obesity, hypolipidemic, antioxidant, gastroprotective, hepatoprotective, cytotoxic, anti-inflammatory, analgesic and wound healing. Toxicity test result showed that ethanol extract of A. cordifolia leaves can be safely consumed. Scientific result showed that A. cordifolia is potential to be developed as medicinal plant.

Keywords: Anredera cordifolia, phytochemical content, pharmacology, toxicology
Introduction

Anredera cordifolia (Ten.) Steenis is grouped as vines with tender and cylindrical intertwined stem. It has green heart-shaped leaves and tuber on its roots or auxiliary [1]. This basellaceae family-origin plant has synonym names ie Boussingautia cordifolia Ten., B. gracilis Miers, A. cordifolia subsp. Gracilis (Miers), B. gracilis f. pseudobaselloides Hauman, B. gracilis var pseudobaselloides (Hauman) Bailey, B. gracilis f. typica (Hauman) and B. cordata Sprenger [2,3]. A. cordifolia is also known as Madeira vine, potato vine, lamb’s tail vine, mignonette vine, heart-leaf Madeira vine, jalap vine, white shroud, enredadera del mosquito, enredadera papa [1], malabar spinach (India) [4], speck blatter/fat leaf/bacon leaf (Jermain) [5], and binahong (Indonesia) [6]. A.cordifolia is South American native plants, distributed from Paraguay up to southern Brazil and northern Argentina. Currently, it has been globally distributed through China, Japan, Israel, India, some part of Africa, USA, Mexico, Caribbean, Australia, New Zealand and its surrounding islands and it showed that this plant can grow in subtropical and tropical climate areas [7]. In Australia and African forests, these plants are prohibited because they are invasive and can harm origin plant from those countries [1,1]. Meanwhile in other countries, this plant is used as traditional medicine. Brazilian people used A. cordifolia leaves to traditionally cure wounds from animal bite (dog and spider) or infected wounds [5]. In Zenta River basin (northwest Argentina), A. cordifolia stem is used to cure headache and toothache [8]. Until now, the data of efficacy of A. cordifolia is still limited, there are only several scientific researches published A. cordifolia which proved that this plant is potential to be developed as medicinal plant. So that, it is important to gather researches related to phytochemical content, pharmacology activity and toxicity test result of A. cordifolia.

Methods

Data in this article are collected from literature study throughout local or international scientific journals in Scopus portal and Google scholar.

Results and Discussion

Phytochemical content of Anredera cordifolia (Ten.) Steenis

Phytochemical screening result from stem, leaves and tuber of A. cordifolia showed terpenoids, steroid, glycoside and alkaloid contents. Meanwhile, its flower contained terpenoids, steroid and glycoside [9]. Lin et al. research showed that A. cordifolia contained triterpenoid sapogenins which were ethyl 3β-hydroxy-5-horolean-12,18-dien-29-oate, larreagenin A, 3β-hydroxy-30-horolean-12,19-dien-28-oic oate with its ethyl ester and 28-ethyl hydrogen-3β-hydroxyolean-12-ene-28,29-dioate [10]. Abou-Zeid et al. identified the essential oil main component of A. cordifolia herbs, which were phytol, α-pinen, and 6,10,14-trimethyl pentadecanone [11]. A. cordifolia tuber contained triterpenoid saponin boussingoside E and quinosaponin-9 [12]. Three flavonoid isolates were obtained from butanol fraction of ethanol extract of A. cordifolia leaves. There were identified as flavone that has 7-OH and predicted having sugar (monoglycoside) attached to O- on C-5, flavone which has -OH on C-7 and predicted having 5-OH without -OH on C-4, flavone that has 7-OH and 0-diOH on B ring and predicted having sugar attached to C-5[13]. Flavonoid from ethyl acetate extract of A. cordifolia leaves was identified as 3, 5, 3',4'-tetrahydroxyflavonol [14]. Methanol extract of A. cordifolia leaves contained 8-glucopranosyl-4',5,7-trihydroxyflavone compound [15], and boussingoside (Aa, Aa, B, and C), momordin, and larreagenin A [16]. Alkaloid (bethanidine) and phenolic acid (p-coumaric acid) compounds were expected to be found in ethanol extract of A. cordifolia leaves [17,18]. Ursolic acid was also found in A. cordifolia leaves [19]. Qiong et al. research found two flavanols and four flavones in A. cordifolia which were bougracol A, 4,7-dihydroxy-5-methoxy – 8- methyl –6 - formyl - flavane, 7-O-methylflavonal, 5,7-dihydroxy-6,8-dimethyl-2-phenyl-4H-1-benzopyran-4-one, desmosflavone and demethoxymatteucinol [20].

Pharmacology Activities of Anredera cordifolia (Ten.) Steenis

Some scientific research had proven that A. cordifolia had pharmacological activity in repairing kidney function, as antibacterial, antifungal, antivirus, protease inhibitor, xanthine oxidase inhibitor, antiabetic, anti hypertensive, vasodilator, diuretic, anti-obesity, hypolipidemic, antioxidant, gastroprotective, hepatoprotective, cytotoxic, anti-inflammatory, analgesic and wound healing.

Kidney Function Repair

Ethanol extract of A. cordifolia leaves at 50, 100, and 150 mg/kg bw that were administered for 4 weeks could reduce significantly creatinine serum and urea level in rats induced by gentamycin and piroxicam. A. cordifolia extract at dose of 150 mg/kg bw. significantly influenced renal index (kidneys weight/rat’s body weight). The test group 150 mg/kg bw had significant difference renal index.
compared to positive control group (p<0.05) and no significant difference compared to normal control group. This result was supported with histopathological observation of kidney which showed at 150 mg/kg bw, didn’t revealed the presence of glomerular cell segmentation on rats. This study suggested that leaves extract of A. cordifolia at dose of 150 mg/kg bw may be able to prevent or even repair damage that occurred to cells [21]. A research had been conducted to A. cordifolia leaves and corn silk extracts towards rat model kidney failure. Administration of extract with single-dose; half single-dose extract combination (50 mg/kg bw of A. cordifolia and 37.5 mg/kg bw of corn silk); single-dose extract combination (100 mg/kg bw of A. cordifolia and 75 mg/kg bw of corn silk) could reduce level of creatinine, urea and TBARS (Thiobarbituric Acid Reactive Substances), enhancement of catalase enzyme level and SOD (Superoxide Dismutase), and also renal histopathologic repair especially in medulla part. This research also showed that administration of half single-dose extract combination gave additive effect and better than single-dose and single-dose extract combination administration [22].

Antibacterial and Antifungal
Antibacterial activity study of ethanol extract from A. cordifolia leaves expressed that the extract could inhibit the growth of Bacillus cereus KTCC 1061, B. subtilis KTCC 1021, Escherichia coli H7 (O156), Pseudomonas aeruginosa, Methicillin-Resistant Coagulase-Negative Staphylococcus (MRCSN), Methicillin-Sensitive Staphylococcus aureus (MSSA), Methicillin-Susceptible Coagulase-Negative Staphylococcus (MSCNS), Methicillin-Resistant Staphylococcus aureus (MRSA), and Vancomycin-Resistant Enterococcus (VRE) with MIC (μg/mL) 256, 256, 256, 256, 512, 512, 1024, >2048 and 1024, respectively [23]. Triterpenoids in the hexane extract of A. cordifolia leaves inhibited E. coli and Staphylococcus aureus growth with zone of inhibition of ≤ 5 mm [24]. The hexane, ethyl acetate and 70% ethanol extracts of A. cordifolia leaves inhibited S. aureus growth with MIC 17 mg/mL, 7 mg/mL, and 5 mg/mL, respectively [25]. The ethanol extract of A. cordifolia leaves had activity against bacteria growth in recurrent aphthous stomatitis with MIC 6.25% [26]. Beside that, the ethanolic extract could inhibit Streptococcus mutans with zone of inhibition of 8.3 mm [27]. The water extract of A. cordifolia leaves revealed inhibition towards B. subtilis ATCC 6633, E. coli ATCC 11105, S. aureus ATCC 6538, and P. aeruginosa ATCC 15153 growth [28]. A test with 100% concentration of water extract from A. cordifolia leaves essence (1 g/mL) showed inhibition towards B. cereus and Salmonella enteritidis 9.64 and 6.86 mm, respectively [29]. A. cordifolia leaves juice could inhibit E. coli ATCC 25922 growth, which its inhibitory zone diameter increase along with increasing in juice concentration [30]. A. cordifolia seed was an ingredient in herbal remedy used in gonorrhoea treatment in South Africa. This herbal remedy revealed moderate activity against Neisseria gonorrhoeae ATCC 49226 (66%), but was proven to have good activity against S. aureus ATCC 12600, E. coli ATCC 11775, and K. pneumonia ATCC 13883 growth with MIC 0.78 mg/mL, 1.56 mg/mL, and 0.78 mg/mL, respectively [31]. The water extract of A. cordifolia roots inhibit Bacillus pumilus and Enterobacter cloacae growth with MIC 50 mg/mL. The chloroform extract of A. cordifolia root inhibit B. pumilus and E. cloacae with MIC 60 and 50 mg/mL respectively. The water and chloroform extracts of A. cordifolia root inhibit B. subtilis, S. aureus, E. coli, K. pneumonia, P. aeruginosa, Serratia marcescens, and E. aerogenes with MIC 60 mg/mL [32]. Etanolic extract (70%) of A. cordifolia stem at 86% (w/v) concentration could stop of Candida albicans growth [33].

Antivirus
Flavonoids from A. cordifolia that were found by Qiong et al., bougracol A, 4,7-dihydroxy-5-methoxy-8-methyl-6-formyl-flavane, and demethoxymatteucin presented weak anti-HIV activity with EC50 45.09, 48.73, 55.47, and 82.75 μmol/L, respectively, and had TI (Trypsin Inhibitor) value 1.41, 1.20, 7.15 and >8.51, respectively [20].

Protease Inhibitor
Ancordin, the major rhizome protein from A. cordifolia stimulated nitrite oxide production in RAW264.7 cell without showing any cytotoxic effect. The stimulation itself depended on dose that was given. Besides, based on the obtained calculation, purified protein revealed 0.0428 μg trypsin inhibition for every μg of ancordin [34].

Xanthine Oxidase Inhibitory Activity
The ethanol extract of A. cordifolia herbs could inhibit xanthine oxidase with IC50 66.20 μg/mL. In this study, allopurinol was used as reference drug with IC50 4.84 μg/mL [35]. Previous study was also conducted in ethanol extract of A. cordifolia leaves and its combination with Sonchus arvensis leaves with ratio 1:1. Both of samples gave IC50 635.25 and 846.32 μg/mL, respectively [36]. Both research results showed that herbs gave better xanthine oxidase inhibitory activity than leaves.

Antidiabetic
Antidiabetic activity in A. cordifolia was performed through in vitro and in vivo tests. In vitro test was conducted towards α-glucosidase, α-amylase and
dipeptidyl peptidase IV (DPP IV) enzymes. α-glucosidase and α-amylase inhibition would reduce hyperglycemic condition after meal by delaying glucose absorption process because both enzymes had role in carbohydrate hydrolysis process. DPP IV had role in incretin degradation process, especially GLP-1 (Glucagon Like Peptide-1) that stimulated insulin production [37]. Elya et al. research result reported that the ethanol extract of A. cordifolia leaves could inhibit α-glucosidase with IC$_{50}$ 54.24 μg/mL, while extract 62.5 μg/mL also gave 74.03% inhibition to α-amylase and 10.70% inhibition to DPP IV [38]. Methanol extract of A. cordifolia leaves at dose of 50 and 200 mg/kg bw significantly reduce blood glucose level in alloxan induced-rats by 61.02% and 60.68% on the 7th day; 75.64% and 66.61% on the 14th day. Histopathology results revealed reducing in damage of β-pancreas cells [39]. The water extract which was obtained from A. cordifolia aerial part (equal to 10 g dry aerial part/kg bw) could reduce rats glucose level from >399 mg%/ to 60 mg%/ The similar result was obtained by 20 mg/kg bw of Boussingoside A1 that was successfully isolated. While Boussingoside A2, B and C gave weaker hypoglycemic activities than Boussingoside A1[16].

Antihypertensive
Antihypertensive effect was observed in rats that were induced by adrenaline. Ethanol extract of A. cordifolia leaves at doses of 50, 100, 150 mg/kg bw could prevent significantly increase in heart rate compared to negative control group (p<0.05). Only ethanol extract 50 mg/kg bw revealed diuretic effect although it was weaker than furosemide. Antihypertensive effect from A. cordifolia was expected to happen through β-adrenergic receptor inhibition and natriuretic effect [40].

Vasodilator
The ethanol (70%) extract of A. cordifolia leaves (0.9 mg/mL) showed significant vasodilation effect in norepinephrine pre-contracted rabbit aortic rings, but no vasodilation effect in the KCl pre-contracted rabbit aortic rings. Mechanism of ethanol extract from A. cordifolia leaves was expected from nitrite oxide [41].

Anti-obesity
A. cordifolia ethanol extract at doses of 300, 600, and 900 mg/kg bw could reduce body weight gain, serum and hepatic lipid levels in high-fat diet induced obese rat. There was an increase in gene expression for PPAR (Peroxisome Proliferator-Activated Receptor) α, fatty acid oxidation, thermogenesis-related proteins-acyl-coenzyme A oxidase, carnitine palmitoyl transferase-1, and uncoupling protein-2 in liver. Moreover, the extract could also suppress sterol regulatory element binding protein-1, lipogenic gene, fatty acid synthase and PPARγ in adipose tissues and liver. This result demonstrated that anti-obesity and hipolipidemic effect from ethanol extract were expected from gene expression regulation that was involved in lipolysis and lipogenesis [42]. Molecular mechanism from this extract was then investigated further by Kim and Choung. The ethanol extract of A. cordifolia at dose of 100 μg/mL could decrease 31% of free fatty acid, it suggest that extract can reduce lipid accumulation in 3T3-L1 cells undergoing differentiation to adipocytes. Extract increased phosphorylation of AMP-activated kinase (AMPK), which is one of the rate-limiting enzyme in fatty acid synthesis pathway. Based on this result, ethanol extract of A. cordifolia leaves was expected to give anti-adipogenic effects through AMPK activity regulation and gene expression that was involved in lipogenesis [43]. Another test conducted by Sukanandar et al. denoted that 96% ethanol extract of A. cordifolia leaves at dose of 100 mg/kg bw gave the lowest body weight increase compared to others group and had better activity than positive control group and orlistat 21.6 mg/kg bw in high-carbohydrate diet induced-rats. This anti-obesity effect was not followed by appetite lost [44].

Anti-dyslipidemia
Ethanol extract from A. cordifolia leaves at doses of 50, 100, 200 mg/kg bw could significantly reduce 55.25%, 63.45%, and 67.70% cholesterol level; 81.31%, 89.01% and 95.33% LDL level; 41.08%, 47.59%, and 50.66% triglyceride level respectively; but extracts at these doses didn’t give effect to HDL level. Moreover, extract administration also caused fat deposit decrease inside endothelial cells in blood vessels [45]. Anti-hypercholesterolemia in vitro test with malondialdehyde (MDA) enzyme and 8-hydroxy-diguanosine (end product from lipid peroxidation process) showed that ethanol extract 100 mg/kg bw could reduce MDA and 8-hydroxy-diguanosine level [46].

Antioxidant
Antioxidant in vitro test was conducted with few methods, such as DPPH free radical, TEAC and ORAC assay. Methanol extract of A. cordifolia leaves could scavenge DPPH radical with IC$_{50}$ 53.11 μg/mL. Fractionation from ethanol extract were hexane, ethyl acetate, and butanol fractions gave IC$_{50}$ DPPH 256.23, 57.96, and 132.39 μg/mL, respectively. The 8-glucopyranosyl-4',5,7-trihydroxyflavone compound that was successfully isolated from ethyl acetate extract of A. cordifolia leaves could scavenge DPPH radical with IC$_{50}$ 68.07 μg/mL [15]. A. cordifolia extract with 18 mg/g total polyphenol (equal to chlorogenic acid) could inhibit DPPH radical with IC$_{50}$ 1572.9 μg/mL [47]. Chao et al. tested the
antioxidant activity of A. cordifolia leaves extract with various methods. The result exposed that methanolic extract had IC₅₀ of DPPH 1173.32 μg/mL. By using TEAC assay, methanolic extract gave IC₅₀ 36.22 μg/mL while ethanolic extract 21.04 μg/mL. Its means ethanolic extract gave higher antioxidant activity than methanolic extract, by TEAC assay. Meanwhile by using ORAC assay, extract exhibited antioxidant activity with ORAC-hydrophilic value 202. 59 μmol Trolox/g dry weight and ORAC-lipophilic value 157.75 μmol Trolox/g dry weight. It was indicated that hydrophilic extract was more effective than lipophilic extract. Phytochemical screening result showed that A. cordifolia extract contained polyphenol (equal to 5.81 mg gallic acid/g dry weight), flavonoid (equal to 40 mg quercetin/g dry weight), flavanol (equal to 6.92 mg quercetin/g dry weight, 781.28 μg myricetin/g dry weight, 455.16 μg morin/g dry weight) [48].

Gastroprotective
A. cordifolia extract at doses of 250, 500, 1250 mg/kg bw significantly reduce ulcer index (16.0%, 12.6%, 16.2 %, respectively) compared to negative control (31.1%). Moreover, extract administration also reduced lesion in gastric mucosa in ethanol-induced rats [49].

Hepatoprotective
The water extract from A. cordifolia leaves, stem and bud decreased SGOT and SGPT level in rat with liver damage that was induced by either CCl₄ or D-GalN. Histopathological change in liver such as necrosis, fat accumulation, ballooning degeneration, inflammatory infiltration of lymphocyte and Kupffer cell around central vein for CCl₄-induced hepatotoxicity and portal vein for D-GalN-induced hepatotoxicity, were simultaneously improved with the three extracts administration [50].

Analgesic
Ethanol extract of A. cordifolia leaves at doses of 100, 200, and 400 mg/kg bw were proven to give analgesic effect. Plantar test showed that in the animal test observation at 1 hour after they were given by 3 doses, time to feel early pain was longer than negative control group, whereas dose increase was directly proportional with duration of early pain. At dose of 400 mg/kg bw, analgesic effect of the extract was comparable with positive control group, diclofenac sodium (2.25 mg/kg bw). Through this test, analgesic effect of extract was expected by inhibiting prostaglandin synthesis [51].

Cytotoxic
Cytotoxic test from ethanol extract of A. cordifolia leaves performed with MTT assay using HeLa cell and apoptosis-induced test with annexin V-FITC. Extract denoted cytotoxic effect and it started apoptosis in HeLa cell at IC₅₀ 75 μg/mL. Extract administration didn’t show increase of p53 expression level in cell. The result of this research revealed that cytotoxic activity of A. cordifolia leaves towards HeLa cell was through p53 pathway [52].

Wound Healing
Test result from A. cordifolia leaves extract ointment at 10, 20, and 40% concentration in rabbit with S. aureus infection wound showed better recovery effect along with increasing in extract concentration. Recovery effect was observed from infection wound length that keeps shrinking [53]. Research which was conducted by Istyastono and Yuliani found that A. cordifolia leaves extract addition into celecoxib gel could accelerate wound healing process (showed by decreasing in wound scar) compared to celecoxib gel only [54]. A. cordifolia leaves which was used in patient with partial thickness burn wound also showed recovery in epithelialization with no further infection [55].

Toxicity Study
Acute toxicity test result of ethanol extract of A. cordifolia leaves showed no mortality in ddY mice until highest dose of 15 g/kg bw. In sub-chronic toxicity test, extract up to dose 1 g/kg bw didn’t cause mortality and behavioral change. There was no significant difference in body weight, organ weight, hematology, and blood biochemistry test. Histology observation showed no difference in heart, lungs, liver, and kidney compared to normal control group. These results showed that ethanol extract of A. cordifolia leaves didn’t give toxic and abnormality symptoms, so it could be considered as safe for medical purpose [56]. Teratogenicity test showed that ethanol extract of A. cordifolia leaves at doses of 100, 400, and 1000 mg/kg bw didn’t have teratogenic effect [57].

Anredera cordifolia has potential as medicinal plant. Based on the general explored research results, A. cordifolia could be used to cure degenerative diseases such as hypertension, diabetes, dyslipidemia, obesity and can act as gastroprotective and hepatoprotective. Free radical is also a trigger to degenerative diseases. Proof of the antioxidant activity from A. cordifolia can be used as a start data to develop degenerative diseases research. Due to limited active compound research of A. cordifolia, there are still chances for world-wide researchers to explore the use of this plant.

http://pharmacologyonline.silae.it
ISSN: 1820-8620
References

http://pharmacologyonline.silae.it
ISSN: 1820-8620

Leliqia, Ni Putu Eka

Institut Teknologi Bandung, Bandung, Indonesia

Subject area: Pharmacology, Toxicology and Pharmaceutics, Medicine

Documents by author

<table>
<thead>
<tr>
<th>Year</th>
<th>Documents</th>
<th>Total citations</th>
<th>Cited by</th>
</tr>
</thead>
<tbody>
<tr>
<td>2013</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2017</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

Overview of efficacy, safety and phytochemical study of anredera cordifolia (Ten.) steenis

Leliqia, N.P.E., Sukandar, E.Y., Fidrianny, I.

Antibacterial activities of Anredera Cordifolia (Ten.) V. Steenis leaves extracts and fractions

Leliqia, N.P.E., Sukandar, E.Y., Fidrianny, I.

Safety of garlic (allium sativum) and turmeric (curcuma domestica) extract in comparison with simvastatin on improving lipid profile in dyslipidemia patients

The data displayed above is compiled exclusively from documents indexed in the Scopus database. To request corrections to any inaccuracies or provide any further feedback, please use the Author Feedback Wizard.
Pharmacologyonline is an international journal online. It is interdisciplinary and aims to bring together different approaches for a diverse readership all over the world in pharmacology. High quality papers will be accepted dealing with any aspect of pharmacology. Pharmacologyonline will provide a medium for the publication of high quality, peer-reviewed, original research articles, reviews and case reports in the field of pharmacology. It will be published quarterly.

Scope

Pharmacologyonline is an international journal online. It is interdisciplinary and aims to bring together different approaches for a diverse readership all over the world in pharmacology. High quality papers will be accepted dealing with any aspect of pharmacology. Pharmacologyonline will provide a medium for the publication of high quality, peer-reviewed, original research articles, reviews and case reports in the field of pharmacology. It will be published quarterly.

Scope

Pharmacologyonline is an international journal online. It is interdisciplinary and aims to bring together different approaches for a diverse readership all over the world in pharmacology. High quality papers will be accepted dealing with any aspect of pharmacology. Pharmacologyonline will provide a medium for the publication of high quality, peer-reviewed, original research articles, reviews and case reports in the field of pharmacology. It will be published quarterly.

Scope

Pharmacologyonline is an international journal online. It is interdisciplinary and aims to bring together different approaches for a diverse readership all over the world in pharmacology. High quality papers will be accepted dealing with any aspect of pharmacology. Pharmacologyonline will provide a medium for the publication of high quality, peer-reviewed, original research articles, reviews and case reports in the field of pharmacology. It will be published quarterly.

Scope

Pharmacologyonline is an international journal online. It is interdisciplinary and aims to bring together different approaches for a diverse readership all over the world in pharmacology. High quality papers will be accepted dealing with any aspect of pharmacology. Pharmacologyonline will provide a medium for the publication of high quality, peer-reviewed, original research articles, reviews and case reports in the field of pharmacology. It will be published quarterly.

Scope

Pharmacologyonline is an international journal online. It is interdisciplinary and aims to bring together different approaches for a diverse readership all over the world in pharmacology. High quality papers will be accepted dealing with any aspect of pharmacology. Pharmacologyonline will provide a medium for the publication of high quality, peer-reviewed, original research articles, reviews and case reports in the field of pharmacology. It will be published quarterly.

Scope

Pharmacologyonline is an international journal online. It is interdisciplinary and aims to bring together different approaches for a diverse readership all over the world in pharmacology. High quality papers will be accepted dealing with any aspect of pharmacology. Pharmacologyonline will provide a medium for the publication of high quality, peer-reviewed, original research articles, reviews and case reports in the field of pharmacology. It will be published quarterly.

Scope

Pharmacologyonline is an international journal online. It is interdisciplinary and aims to bring together different approaches for a diverse readership all over the world in pharmacology. High quality papers will be accepted dealing with any aspect of pharmacology. Pharmacologyonline will provide a medium for the publication of high quality, peer-reviewed, original research articles, reviews and case reports in the field of pharmacology. It will be published quarterly.

Scope

Pharmacologyonline is an international journal online. It is interdisciplinary and aims to bring together different approaches for a diverse readership all over the world in pharmacology. High quality papers will be accepted dealing with any aspect of pharmacology. Pharmacologyonline will provide a medium for the publication of high quality, peer-reviewed, original research articles, reviews and case reports in the field of pharmacology. It will be published quarterly.
Pharmacologyonline

It ranks journals by their 'average prestige per article'. It is based on the idea that 'all citations are not created equal'. SJR is a measure of scientific influence of journals that accounts for both the number of citations received by a journal and the importance or prestige of the journals where such citations come from. It measures the scientific influence of the average article documents from a journal and divides them by the total number of documents published in that journal. The chart shows the evolution of the average number of times documents published in a journal in the past two, three and four years have been cited in the current year. The two years line is equivalent to journal impact factor (Thomson Reuters) metric.

<table>
<thead>
<tr>
<th>Year</th>
<th>Cites / Doc. (4 years)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2007</td>
<td>0.000</td>
</tr>
<tr>
<td>2008</td>
<td>0.221</td>
</tr>
<tr>
<td>2009</td>
<td>0.341</td>
</tr>
<tr>
<td>2010</td>
<td>0.388</td>
</tr>
<tr>
<td>2011</td>
<td>0.349</td>
</tr>
<tr>
<td>2012</td>
<td>0.286</td>
</tr>
<tr>
<td>2013</td>
<td>0.370</td>
</tr>
<tr>
<td>2014</td>
<td>0.410</td>
</tr>
<tr>
<td>2015</td>
<td>0.311</td>
</tr>
<tr>
<td>2016</td>
<td>0.327</td>
</tr>
</tbody>
</table>

Total Cites

<table>
<thead>
<tr>
<th>Year</th>
<th>Cites</th>
</tr>
</thead>
<tbody>
<tr>
<td>2007</td>
<td>0</td>
</tr>
<tr>
<td>2009</td>
<td>200</td>
</tr>
<tr>
<td>2011</td>
<td>400</td>
</tr>
<tr>
<td>2013</td>
<td>600</td>
</tr>
<tr>
<td>2015</td>
<td>800</td>
</tr>
<tr>
<td>2017</td>
<td>1000</td>
</tr>
</tbody>
</table>

Self-Cites

<table>
<thead>
<tr>
<th>Year</th>
<th>Cites</th>
</tr>
</thead>
<tbody>
<tr>
<td>2007</td>
<td>0</td>
</tr>
<tr>
<td>2009</td>
<td>0</td>
</tr>
<tr>
<td>2011</td>
<td>0</td>
</tr>
<tr>
<td>2013</td>
<td>0</td>
</tr>
<tr>
<td>2015</td>
<td>0</td>
</tr>
<tr>
<td>2017</td>
<td>0</td>
</tr>
</tbody>
</table>

External Cites per Doc

<table>
<thead>
<tr>
<th>Year</th>
<th>% International Collaboration</th>
</tr>
</thead>
<tbody>
<tr>
<td>2007</td>
<td>3.68</td>
</tr>
<tr>
<td>2009</td>
<td>5.41</td>
</tr>
<tr>
<td>2011</td>
<td>7.24</td>
</tr>
<tr>
<td>2013</td>
<td>9.09</td>
</tr>
<tr>
<td>2015</td>
<td>10.91</td>
</tr>
<tr>
<td>2017</td>
<td>12.82</td>
</tr>
</tbody>
</table>

Citable documents

<table>
<thead>
<tr>
<th>Year</th>
<th>Uncited documents</th>
</tr>
</thead>
<tbody>
<tr>
<td>2007</td>
<td>0</td>
</tr>
<tr>
<td>2009</td>
<td>111</td>
</tr>
<tr>
<td>2011</td>
<td>281</td>
</tr>
<tr>
<td>2013</td>
<td>565</td>
</tr>
<tr>
<td>2015</td>
<td>900</td>
</tr>
<tr>
<td>2017</td>
<td>1200</td>
</tr>
</tbody>
</table>

Non-citable documents

<table>
<thead>
<tr>
<th>Year</th>
<th>Uncited documents</th>
</tr>
</thead>
<tbody>
<tr>
<td>2007</td>
<td>1200</td>
</tr>
<tr>
<td>2009</td>
<td>200</td>
</tr>
<tr>
<td>2011</td>
<td>724</td>
</tr>
<tr>
<td>2013</td>
<td>435</td>
</tr>
<tr>
<td>2015</td>
<td>335</td>
</tr>
<tr>
<td>2017</td>
<td>0</td>
</tr>
</tbody>
</table>

Cited documents

<table>
<thead>
<tr>
<th>Year</th>
<th>Uncited documents</th>
</tr>
</thead>
<tbody>
<tr>
<td>2007</td>
<td>0</td>
</tr>
<tr>
<td>2009</td>
<td>111</td>
</tr>
<tr>
<td>2011</td>
<td>281</td>
</tr>
<tr>
<td>2013</td>
<td>565</td>
</tr>
<tr>
<td>2015</td>
<td>900</td>
</tr>
<tr>
<td>2017</td>
<td>1200</td>
</tr>
</tbody>
</table>

Uncited documents

Show this widget in your own website

Just copy the code below and paste within your html code:

```html
<a href="https://www.scimagojr.com/journalsearch.php?q=5800179590&tip=sid&clean=0"
```
The users of Scimago Journal & Country Rank have the possibility to dialogue through comments linked to a specific journal. The purpose is to have a forum in which general doubts about the processes of publication in the journal, experiences and other issues derived from the publication of papers are resolved. For topics on particular articles, maintain the dialogue through the usual channels with your editor.
EST MODUS IN REBUS
Horatio (Satire 1.1.106)
Pharmacologyonline is an international journal online. It is interdisciplinary and aims to bring together different approaches for a diverse readership all over the world in Pharmacology, Ethnopharmacology and Medicinal Plants. High quality papers will be accepted dealing with any aspect of Pharmacology.

Pharmacologyonline will provide a medium for the publication of high quality, peer-reviewed, original research articles, reviews and case reports in the field of Pharmacology, Ethnopharmacology and Medicinal Plants. It will be published quarterly.

Pharmacologyonline accepts submissions, presented as original research (Archives and Young Researchers section), short papers, reviews, correspondence (Newsletter section) and case reports (Case Report section). Submissions regarding all types of papers are welcomed for publication. In general, all articles submitted are peer reviewed by at least two researchers expert in the field.

Pharmacologyonline is an “Open Access Journal”!
All articles published are made freely and permanently accessible online immediately upon publication, without subscription charges or registration barriers.

Authors of articles published in Pharmacologyonline are the copyright holders of their articles and have granted to any third party, in advance and in perpetuity, the right to use, reproduce or disseminate the article, according to the SILAE copyright and license agreement.

Article-processing charges
Open access publishing is not without costs. Pharmacologyonline therefore levies an article-processing charge of €300 (Euro) / $387 (USD) for authors from European Union, U.S.A., Japan and €120 (Euro) / $155 (USD) for others countries for each article accepted for publication. For further details, see our article-processing charge page.

Pharmacologyonline Dates
Vol.1 April, 30 • Vol.2 August, 30; • Vol.3 December, 30

Last published 📅
<table>
<thead>
<tr>
<th>Title</th>
<th>Pages</th>
<th>Size(kB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PROMISCUITY OF NSAIDS, THE SECRET OF THEIR EFFECTIVENESS: PERSPECTIVE</td>
<td>1-4</td>
<td>241</td>
</tr>
<tr>
<td>RJ Vargas, RA Higueros, DG Saldaña, LY Xajil</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ACCUMULATION OF HEAVY METALS BY CONYZA BONARIENSIS (L.) CRONO IN THE UPPER BASIS OF THE RIVER BOGOTA</td>
<td>5-10</td>
<td>336</td>
</tr>
<tr>
<td>Rodríguez A., Oscar E., Celis Z. Crispin A.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DETERMINATION OF ANTIOXIDANTS AND ANTIBACTERIAL ACTIVITIES, TOTAL PHENOLIC, POLYPHENOL AND PIGMENT CONTENTS IN NASTURTium OFFICINALE</td>
<td>11-18</td>
<td>765</td>
</tr>
<tr>
<td>Roheena Zafar, Muhammad Zahoor, Abdul Bari Shah, Fazal Majid</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHEMICAL ANALYSIS AND NORMO GLYCEMIC EFFECT OF OPUNTIA FICUS INDICA</td>
<td>19-27</td>
<td>414</td>
</tr>
<tr>
<td>Patricia I. Manzano, Oswaldo G. Pesantes, Glenda M. Sarmiento, Ivan Chóez-Guaranda, Zoraida C. Burbano, Galo M. Duran, Maria C. Villares</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DETERMINING THE ANTI-TUMOR EFFECTS OF DIFFERENT EXTRACTING METHODS OF ARUM PALAESTINUM ON DIFFERENT CANCER CELL LINES BY IN VITRO ASSAY</td>
<td>28-45</td>
<td>1165</td>
</tr>
<tr>
<td>Hatmal, M.M.; Abderrahman, S.M.; Alsholi D.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EFFECTS ON IN VIVO ANGIogenesis OF EXTRACTS FROM ASTRONIUM URUNDEUVA (FR. ALL.) ENG. (ANACARDIACEAE)</td>
<td>46-54</td>
<td>400</td>
</tr>
<tr>
<td>Negri, K.M.S.; Malafronte, N.; Certo, G.; D’Angelo, V.; Rapisarda, A.; Bauab, T.M.; Germanò, M.P.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>STUDY OF ANTIOXIDANT POTENTIAL, AND QUANTIFICATION OF MAJOR POLYPHENOLS IN LEONURUS SIBIRICUS L. LEAVES USING HPLC</td>
<td>55-67</td>
<td>527</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Apurba Kumar Barmana, d, Gazi Md. Monjur Murshida, Md. Saifuzzamana, b, Kamanashis Mahaldara, Mirza Bojić, Nripendra Nath Biswasa

8. COMPARATIVE STUDY OF CYTOCHROME P450 INHIBITORS ON CULTURED MOUSE HEPATOCYTES
Akhtar, U.; Ahmad, M.; Tayyeb, A.; Ali, G.
68-88 946

9. AWARENESS OF VESICOVAGINAL FISTULA AMONG HEALTH WORKERS IN SOME HEALTH FACILITIES OF ZAMFARA STATE, NORTHWEST NIGERIA
89-97 325

10. THE ANTI-OXIDANT ACTIVITY OF EXTRACTS AND FRACTIONS OF CHROMOLAENA BULLATA (KLATT) KING & ROBINSON
Rodriguez A. Oscar E., Torrenegra G. Rubén D.
98-105 709

11. THE FREQUENCY OF VITAMIN K EPOXIDE REDUCTASE COMPLEX–1639G>A GENETIC VARIANT AMONG HEALTHY UNRELATED JORDANIAN VOLUNTEERS
Yazun Bashir Jarrar, Lama Hamadneh and Wesam Naser
106-112 469

12. ETHNOBOTANICAL USES OF ‘CEMCEM’ (SPONDIAS PINNATA (L. E.) KURZ; ANACARDIACEAE) LEAVES IN BALI (INDONESIA) AND ITS ANTIOXIDANT ACTIVITY
Wawan Sujarwo, Vienna Saraswaty, Ary Prihardhyanto Keim, Giulia Caneva and Daniela Tofani
113-123 1164

13. OVERVIEW OF EFFICACY, SAFETY AND PHYTOCHEMICAL STUDY OF ANREDERA CORDIFOLIA (TEN.) STEENIS
Ni Putu Eka Leliqia, Elin Yulinhah Sukandar, Irdia Fidrianny
124-131 293

©2011-2019 SILAE - Società Italo-Latinoamericana di Etnomedicina / PharmacologyOnLine
Privacy Policy | P.IVA: 95130850639

https://pharmacologyonline.silae.it/front/archives_2017_1
PharmacologyOnline

Dedicated to the Memory of Ludovico Sorrentino, Emeritus Pharmacology Professor (1932-2010)

ISSN: 1827-8620

Pharmacologyonline is indexed and abstracted by Chemical Abstracts, SCOPUS, EMBASE, Google, Google Scholar, DOAJ, Genamics JournalSeek, Scirus and INDEX COPERNICUS.

PharmacologyOnline on Google Scholar

©2011-2019 SILAE - Società Italo-Latinoamericana di Etnomedicina / PharmacologyOnLine
Privacy Policy | P.IVA: 95130850639

CSS Valido!
OVERVIEW OF EFFICACY, SAFETY AND PHYTOCHEMICAL STUDY OF ANREDERA CORDIFOLIA (TEN.) STEENIS

by Ni Putu Eka Leliqia
OVERVIEW OF EFFICACY, SAFETY AND PHYTOCHEMICAL STUDY OF
ANREDERA CORDIFOLIA (TEN.) STEENIS

Ni Putu Eka Leliqia1,2,3, Elin Yulinah Sukandar1, Irla Fidrianny2,
1Pharmacology Clinic, Pharmacy Research Group, School of Pharmacy, Bandung Institute of Technology, Indonesia
2Pharmaceutical Biology, Research Group, School of Pharmacy, Bandung Institute of Technology, Indonesia
3Pharmacy Department, Faculty of Mathematics and Natural Sciences, Udayana University, Indonesia
leliqia@gmail.com

Summary

Anredera cordifolia (Ten.) Steenis is used for medical purposes. In this article, traditional usage, phytochemical content, pharmacology activity and toxicity test result of A. cordifolia will be summarized. Terpenoids, steroid, glycoside, flavonoids, saponins and alkaloids were found in A. cordifolia. Apart from that, some pure compounds such as ursolic acid, ancordin, apigenin, etc., were isolated from this plant. A. cordifolia was proven to have benefits in repairing kidney function, as antibacterial, antifungal, antiviral, protease inhibitor, xanthine oxidase inhibitor, antidiabetic, antihypertensive, vasodilator, diuretic, anti-obesity, hypolipidemic, antioxidant, gastroprotective, hepatoprotective, cytotoxic, anti-inflammatory, analgesic and wound healing. Toxicity test result showed that ethanol extract of A. cordifolia leaves can be safely consumed. Scientific result showed that A. cordifolia is potential to be developed as medicinal plant.

Keywords: Anredera cordifolia, phytochemical content, pharmacology, toxicology
Introduction

Aurea cordifolia (Ten.) Steenis is grouped as vines with tender and cylindrical interwoven stems. It has green heart-shaped leaves and tendrils on its roots or rotatory [1]. This basiliciaceae family-origin plant has synonym names i.e. *Bussingontia cordifolia* Ten., *B. gracilis* Miers, *A. cordifolia* subsp. *Gracilis* (Miers), *B. gracilis* f. pseudobasselloides Hauman, *B. gracilis* var pseudobasselloides (Hauman) Bailey, *B. gracilis* f. typica (Hauman) and *B. cordata* Sprenger [2, 3]. *A. cordifolia* also known as Madeira vine, potato vine, lamb's tail vine, nionnet vine, heart-leaf Madeira vine, jalap vine, white shroud, enredadera del mosquito, enredadera papa [1], malabar spinach (India) [4], speck blatterflat leaf/bacon leaf (Jeraman) [5], and binahong (Indonesia) [6].

A. cordifolia is South American native plants, distributed from Paraguay up to southern Brazil and northern Argentina. Currently, it has been globally distributed through China, Japan, Israel, India, some part of Africa, USA, Mexico, Caribbean, Australia, New Zealand and its surrounding islands and it showed that this plant can grow in subtropical and tropical climate areas [7]. In Australia and African forests, these plants are prohibited because they are invasive and can harm origin plant from those countries [1, 7]. Meanwhile in other countries, this plant is used as traditional medicine. Brazilian people used *A. cordifolia* leaves to traditionally cure wounds from animal bite (dog and spider) or infected wounds [5]. In Zenta river basin (northwest Argentina), *A. cordifolia* stem is used to cure headache and toothache [8]. Until now, the data of efficacy of *A. cordifolia* is still limited, there are only several scientific researches published *A. cordifolia* which proved that this plant is potential to be developed as medicinal plant. So that, it is important to gather researches related to phytochemical content, pharmacology activity and toxicity test result of *A. cordifolia*.

Method

Data in this article are collected from literature study throughout local or international scientific journals in Scopus portal and Google scholar.

Result and Discussion

1. Phytochemical content of *Aurea cordifolia* (Ten.) Steenis

Phytochemical screening result from stem, leaves and tuber of *A. cordifolia* showed terpenoids, steroid, glycoside and alkaloid contents. Meanwhile, its flower contained terpenoids, steroid and glycoside [9]. Lin et al. research showed that *A. cordifolia* contained tripenoid sapogenins which were ethyldihydroxy-30-horolen-12,18-dien-28-oate, luteonin (XV), 3-hydroxy-30-horolen-12,19-dien-28-oic oate with its ethyl ester and 28-ethyl hydrogen 30-hydroxyolean-12-one-28,29-dicarboxylic acid [10]. Abou-zeitid et al. identified the essential oil main component of *A. cordifolia* herbs, which were phytoin, α-pinene, and 6,10,14-trimethyl pentadecanone [11]. *A. cordifolia* tuber contained tripenoid sapogenin boussingoside E and quinosaponin-9 [12].

Three flavonoid isolates were obtained from butanol fraction of ethanol extract of *A. cordifolia* leaves. There were identified as flavone that has 7-OH and predicted having one sugar (monoglycoside) attached to O- on C-5, flavone which has –OH on C-7 and predicted having 5-OH without –OH on C-4, flavone that has 7-OH and 8-diOH on B ring and predicted having sugar attached to C-5[13]. Flavonoid from ethyl acetate extract of *A. cordifolia* leaves was identified as 3, 5, 3’, 4’- tetrahydroxyflavonol [14]. Methanol extract of *A. cordifolia* leaves contained 8-glucopyranosyl 4’, 5,7-trihydroxyflavonol compound [15], and boussingoside (A1, A2, B, and C), moronolin, and larreagenin A [16]. Alkaloid (bathenidine) and phenolic acid (p-coumaric acid) compounds were expected to be found in ethanol extract of *A. cordifolia* leaves [17, 18]. Ursolic acid was also found in *A. cordifolia* leaves [19]. Qong et al. research found two flavonoids and four flavones in *A. cordifolia* which were bougaracol A, 7,4-dihydroxy-3-methoxy-8-methyl-6-formyl flavane, 7-O-methylflavone, 5,7-dihydroxy-6,8-dimethyl-2-phenyl-4H-1-benzopyran-4-one, desmosflavone and demethoxybuteinol [20].

II. Pharmacology Activities of *Aurea cordifolia* (Ten.) Steenis

Some scientific research had proven that *A. cordifolia* had pharmacological activity in repairing kidney function, as antibacterial, antifungal, antivirus, protease inhibitor, xanthine oxidase inhibitor, anti-diabetic, antihypertensive, vasodilator, diuretic, anti-obesity, hypolipidemic, antioxidant, gastroprotective, hepatoprotective, cytotoxic, anti-inflammatory, analgesic and wound healing

a. Kidney Function Repair

Ethanol extract of *A. cordifolia* leaves at 50, 100, and 150 mg/kg bw that were administered for 4 weeks could reduce significantly creatinine serum and urine level in rats induced by gentamycin and piroxicam. *A. cordifolia* extract at dose of 150 mg/kg bw significantly influenced renal index (mg body weight/100 g bw) The test group 150 mg/kg bw had significant difference renal index compared to control group (p<0.05) and no significant difference compared to normal control group. This result was supported with histopathological observation of kidney which showed at 150 mg/kg bw, didn’t revealed the presence of alveolar and tubular segmentation on rats. This study suggested that extract of *A. cordifolia* at dose of 150 mg/kg bw may be able to prevent or even repair damage that occurred to cells [21].

A research had been conducted to *A. cordifolia* leaves and corn silk extracts towards rat model kidney failure. Administration of extract with single-dose; half single-dose extract combination (50 mg/kg bw of *A. cordifolia* and 37.5 mg/kg bw of corn silk); single-dose extract combination (100 mg/kg bw of *A. cordifolia* and 75 mg/kg bw of corn silk) could reduce level of creatinine, urea and TBARS
Thiobarbituric Acid Reactive Substances), enhancement of catalase enzyme level and SOD (Superoxide Dismutase), and also renal histopathologic repair especially in medulla part. This research also showed that administration of half single-dose extract combination gave additive effect and better than single-dose and single-dose extract combination administration [22].

a. **Antibacterial and Antifungal**

Antibacterial activity study of ethanol extract from *A. cordifolia* leaves expressed that the extract could inhibit the growth of *Bacillus subtilis* ATCC 10987, *Escherichia coli* H7 (ATCC 11778), *Pseudomonas aeruginosa*, Methicillin-Resistant Coagulase-Negative Staphylococcus (MRSA), Methicillin-Resistant Staphylococcus aureus (MSSA), and *Vancomycin-Resistant Enterococcus* (VRE) with MIC (μg/mL) 256, 256, 256, 256, 512, 1024, >256, and >1024, respectively [23]. Terpenoids in the hexane extract of *A. cordifolia* leaves inhibited *E. coli* and *Staphylococcus aureus* growth with zone of inhibition of ≤5 mm [24]. The hexane, ethyl acetate and 70% ethanol extract of *A. cordifolia* leaves inhibited *S. aureus* growth with MIC 17 mg/mL, 7 mg/mL, and 5 mg/mL, respectively [25]. The ethanol extract of *A. cordifolia* leaves had activity against bacteria growth in recurrent aphthous stomatitis with MIC 6.25% [26]. Beside that, the ethanol extract could inhibit Streptococcus mutans with zone of inhibition of 8.3 mm [27]. The water 45% extract of *A. cordifolia* leaves revealed inhibition towards *B. subtilis* ATCC 6633, *E. coli* ATCC 11105, *S. aureus* ATCC 6538, and *P. aeruginosa* ATCC 15153 growth [28]. A test with 100% concentration of water extract from *A. cordifolia* leaves essence (1 μL/mL) showed inhibition towards *B. cereus* and *Salmonella enteritidis* 9.64 and 6.86 mm, respectively [29]. *A. cordifolia* leaves juice could inhibit *E. coli* ATCC 25922 growth, which its inhibitory zone diameter increase along with increasing in juice concentration [30].

A. cordifolia seed was an ingredient in herbal remedy used in gonorrhea treatment in South Africa. This herbal remedy revealed moderate activity against *Neisseria gonorrhoeae* ATCC 49226 (66%), but was proven to have good activity against *S. aureus* ATCC 12600, *E. coli* ATCC 11778, *S. pneumoniae* ATCC 13883 growth with MIC 0.78 mg/mL, 1.56 mg/mL, and 0.78 mg/mL, respectively [31]. The water extract of *A. cordifolia* roots inhibit *Bacillus subtilis* and *Escherichia coli* growth with MIC 50 μg/mL. The chloroform extract of *A. cordifolia* root inhibit *B. subtilis* and *E. coli* growth with MIC 60 and 50 μg/mL respectively. The water and chloroform extracts of *A. cordifolia* root inhibit *B. subtilis*, *S. aureus*, *E. coli*, *K. pneumoniae*, *P. aeruginosa*, *Serratia marcescens*, and *E. aerogenes* with MIC 60 mg/mL [32]. Ethanolic extract (70%) of *A. cordifolia* stem at 86% (w/v) concentration could stop of *Candida albicans* growth [33].

b. **Antivirus**

Flavonoids from *A. cordifolia* that were found by Qiong et al. [34], *474-dihydroxy-3′,5′-methyl-6′-formyl flavone*, and *demethoxyflavone* presented weak anti-HIV activity with EC₅₀ 45.09, 48.25, 55.47, and 82.75 μM/mL, respectively, and had TI (Trypsin Inhibitor) value 1.41, 1.20, 7.15 and >8.51, respectively [20].

c. **Protease Inhibitor**

Acordin, the major rhizome protein from *A. cordifolia* stimulated nitrile oxidation enzyme in RAW264.7 cell without showing any cytotoxic effect. The stimulation itself depended on dose that was given. Besides, based on the obtained calculation, purified protein revealed 0.0428 μg trypsin inhibition for every μg of acordin [34].

d. **Xanthine Oxidase Inhibitory Activity**

The ethanol extract of *A. cordifolia* herbs could inhibit xanthine oxidase with IC₅₀ 66.20 μg/mL. In this study, allpoprinosin was used as reference drug with IC₅₀ 4.84 μg/mL [35]. Previous study was also conducted in ethanol extract of *A. cordifolia* leaves and its combination with *Sanchus arvensis* leaves with ratio 1:1. Both of samples gave IC₅₀ 635.25 and 846.52 μg/mL, respectively [36]. Both research results showed that herbs gave better xanthine oxidase inhibitory activity than leaves.

e. **Antidiabetic**

29 Antidiabetic activity in *A. cordifolia* was performed through *in vitro* and *in vivo* tests. *In vitro* test was conducted towards α-glucosidase, α-amylase and dipeptidyl peptidase IV (DPP IV) enzymes. α-glucosidase and α-amylase inhibition would reduce hyperglycemic condition after meal by delaying glucose absorption process because both enzymes had role in carbohydrate hydrolysis process. DPP IV had role in incretin degradation process, especially GLP-1 (Glucagon Like Peptide-1) that stimulated insulin production [37]. Elnaya et al. research result reported that the ethanol extract of *A. cordifolia* leaves could inhibit α-glucosidase with IC₅₀ 54.24 μg/mL, while extract 62.5 μg/mL also gave 74.03% inhibition to α-amylase and 10.70% inhibition to DPP IV [38].

Methanol extract of *A. cordifolia* leaves at dose of 50 and 200 mg/kg bw significantly reduce blood glucose level in alloxan induced-rats by 61.02% and 60.68% on the 7th day, 75.64% and 66.61% on the 14th day. Histopathology results revealed reducing in damage of β-pancreas cells [39]. The water extract which was obtained from *A. cordifolia* aerial part (equal to 10 g dry aerial part/kg bw) could reduce rats glucose level from >500 mg/dL to 60 mg/dL. The similar result was obtained by 20 mg/kg bw of Boussingnoides A1 that was successfully isolated. While Boussingnoides A2, B and C gave weaker hypoglycemic activities than Boussingnoides A1[16].

f. **Antihypertensive**

Antihypertensive effect 1 is observed in rats that were induced by adrenaline. Ethanol extract of *A. cordifolia*
leaves at doses of 50, 100, and 150 mg bw could prevent significantly increase in heart rate compared to negative control group (p<0.05). Only ethanol extract 50 mg/kg bw revealed diuretic effect although it was weaker than furosemide. Antihypertensive effect from A. cordifolia was expected to happen through β-adrenergic receptor inhibition and natriuretic effect [40].

g. Vasodilator

The ethanol (70%) extract of A. cordifolia leaves (0.9 mg/mL) showed significant vasodilation effect in norepinephrine pre-contracted rabbit aortic rings, but no vasodilation effect in the KCl pre-contracted rabbit aortic rings. Mechanism of ethanol extract from A. cordifolia leaves was expected from nitrite oxide [41].

h. Anti-obesity

A. cordifolia extract at doses of 300, 600, and 900 mg/kg bw could reduce body weight gain, serum and hepatic lipid levels in high-fat diet induced obese rats. [2] was an increase in gene expression for PPAR (Peroxisome Proliferator-Activated Receptor α, fatty acid oxidation, thermogenesis-related proteins-acyl-coenzyme A oxidase, carnitine palmitoyl transferase-1, and uncoupling protein-1) in liver. Moreover, the extract could also suppress sterol regulatory element binding protein-1c, lipogenic gene, fatty acid synthase and PAPAR in adipose tissues and liver. This result demonstrated that anti-obesity and hypolipidemic effect from ethanol extract were expected from gene expression regulation that was involved in lipolysis and lipogenesis [42]. Molecular mechanism from this extract was then investigated further by Kim and Chung. The ethanol extract of A. cordifolia at dose of 100 μg/mL could decrease 31% of free fatty acid, it suggest that extract could reduce lipid accumulation in 3T3-L1 cells undergoing differentiation to adipocytes. Extract increased phosphorylation of AMP-activated kinase (AMPK), which is one of the rate-limiting enzyme in fatty acid synthesis pathway. Based on this result, ethanol extract of A. cordifolia leaves was expected to give anti-adipogenic effects through AMPK activation and gene expression that was involved in lipogenesis [43]. Another test conducted by Suk [3] et al. denoted that 96% ethanol extract of A. cordifolia leaves at dose of 100 mg/kg bw gave the lowest body weight increase compared to others group and had better activity than positive control group and orlistat 21.6 mg/kg bw in high-carbohydrate diet induced-rats. This anti-obesity effect was not followed by appetite loss [44].

i. Antidyslipidemia

Ethanol extract from A. cordifolia leaves at doses of 50, 100, 200 mg/kg bw could significantly reduce 55.25%, 63.45%, and 67.70% cholesterol level; 81.31%, 89.01% and 95.33% LDL level; 41.08%, 47.59%, and 50.66% triglyceride level respectively; but extracts at these doses didn’t give effect to HDL level. Moreover, extract administration also caused fat deposit decrease inside endothelial cells in blood vessels [45]. Anti-hypercholesterolemia in vitro test with malondialdehyde (MDA) enzyme and 8-hydroxy-
diguanosine (end product from lipid peroxidation process) showed that ethanol extract 100 mg/kg bw could reduce MDA and 8-hydroxy-diguanosine level [46].

j. Antioxidant

Antioxidant: In vitro test was conducted with few methods, such as DPPH free radical, TEAC and ORAC assay. Methanol extract of A. cordifolia leaves could scavenge DPPH radical with IC₅₀ 53.11 μg/mL. Fractionation from ethanol extract were hexane, ethyl acetate, and butanol fractions gave IC₅₀ DPPH 256.23, 57.96, and 132.39 μg/mL, respectively. The 8-gluco-β-4',5,7-trihydroxyflavone compound that was successfully isolated from ethyl acetate extract of A. cordifolia leaves could scavenge DPPH radical with IC₅₀ 68.07 μg/mL [15]. A. cordifolia extract with 18 mg/g total polyphenol (equal to chlorogenic acid) could inhibit DPPH radical with IC₅₀ 1572.9 μg/mL [47]. Chao et al. tested the antioxidant activity of A. cordifolia leaves extract with various methods. The result exposed that methanolic extract had IC₅₀ 1173.32 μg/mL. By using TEAC assay, methanolic extract gave IC₅₀ 36.25 μg/mL while ethanolic extract 21.04 μg/mL. Its means ethanolic extract gave higher antioxidant activity than methanolic extract, by TEAC assay. Meanwhile by using ORAC assay, extract exhibited antioxidant activity with ORAC-hydrophilic value 202.59 μmol Trolox/g dry weight and ORAC-lipophilic value 157.75 μmol Trolox/g dry weight. It was indicated that hydrophilic extract was more effective than lipophilic extract. Phytochemical screening result showed [48]. A. cordifolia extract contained polyphenol (equal to 5.81 mg gallic acid/g dry weight), flavonoid (equal to 40 mg quercetin/g dry weight), flavonol (equal to 6.92 mg quercetin/g dry weight, 781.28 μg myricetin/g dry weight, 455.16 μg morin/g dry weight) [8].

k. Gastroprotective

A. cordifolia extract at doses of 250, 500, 1250 mg/kg bw significantly reduce ulcer index (16.0%, 12.6%, 16.2 %, respectively) compared to negative control (31.1%). Moreover, extract administration also reduced lesion in gastric mucosa in ethanol-induced rats [49].

l. Hepatoprotective

The water extract from A. cordifolia leaves, stem and bud decreased SGOT and SGPT level in rat with liver damage that was induced by either CCl₄ or D-GalN. Histopathological change in liver such as necrosis, fat accumulation, ballooning degeneration, inflammatory infiltration of lymphocyte and Kupffer cell around central vein for CCl₄-induced hepatotoxicity and portal vein for D-GalN-induced hepatotoxicity, were simultaneously improved with the three extracts administration [50].

m. Analgesic

Ethanol extract of A. cordifolia leaves at doses of 100, 200, and 400 mg/kg bw were proven to give analgesic effect. Plantar test showed that in the animal test observation at 1 hour after they were given by 3 doses, time to feel early pain was longer than negative control group, whereas dose
increase was directly proportional with duration of early pain. At dose of 400 mg/kg b.w., analgesic effect of the extract was comparable with positive control group, diclofenac sodium (2.25 mg/kg b.w.). Through this test, analgesic effect of extract was expected by inhibiting prostaglandin synthesis [51].

n. Cytotoxicity
Cytotoxic test from ethanol extract of A. cordifolia leaves performed with MTT assay using HeLa cell and apoptosis-induced test with annexin V-FITC. Extract denoted cytotoxic effect and it started apoptosis in HeLa cell at IC50 75 µg/mL. Extract administration didn’t show increase of p53 expression level in cell. The result of this research revealed that cytotoxic activity of A. cordifolia leaves towards HeLa cell was through p53 pathway [52].

o. Wound Healing
Test result from A. cordifolia leaves extract ointment at 10, 20, and 40% concentration in rabbit with S. aureus infection wound showed better recovery effect along with increasing in extract concentration. Recovery effect was observed from infected wound length that keeps shrinking [53]. Research which was conducted by Istyastono and Yuliandi found that A. cordifolia leaves extract addition into celecoxib gel could accelerate wound healing process (showed by decreasing in wound scar) compared to celecoxib gel only [54]. A. cordifolia leaves which was used in patient with partial thickness burn wound also showed recovery in epithelialization with no further infection [55].

III. Toxicity Study
Acute toxicity test result of ethanol extract of A. cordifolia leaves showed no mortality in ddY mice until highest dose of 15 g/kg b.w. In subchronic toxicity test, extract up to dose 1 g/kg b.w. didn’t cause mortality and behavioral change. There was no significant difference in body weight, organ weight, hematology, and blood biochemistry test. Histology observation showed no difference in heart, lungs, liver, and kidney compared to normal control group. These results showed that ethanol extract of A. cordifolia leaves didn’t give toxic and abnormality symptoms, so it could be considered as safe for medical purpose [56]. Teratogenicity test showed that ethanol extract of A. cordifolia leaves at doses of 100, 400, and 1000 mg/kg b.w. didn’t have teratogenic effect [37].

Conclusion
Aureledra cordifolia has potentials as medicinal plant. Based on the general explored research results, A. cordifolia could be used to cure degenerative diseases such as hypertension, diabetes, dyslipidemia and obesity and can act as gastroprotective and hepatoprotective. Free radical is also a trigger to degenerative diseases. Proof of the antioxidant activity from A. cordifolia can be used as a start data to develop degenerative diseases research. Due to limited active compound research of A. cordifolia, there are still chances for world-wide researchers to explore the use of this plant.

References

OVERVIEW OF EFFICACY, SAFETY AND PHYTOCHEMICAL STUDY OF ANREDERA CORDIFOLIA (TEN.) STEENIS

ORIGINALITY REPORT

<table>
<thead>
<tr>
<th>% 18</th>
<th>% 14</th>
<th>% 13</th>
<th>% 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>SIMILARITY INDEX</td>
<td>INTERNET SOURCES</td>
<td>PUBLICATIONS</td>
<td>STUDENT PAPERS</td>
</tr>
</tbody>
</table>

PRIMARY SOURCES

1. www.ijpssjournal.com
 - Internet Source
 - %2

2. www.anthonyroberts.info
 - Internet Source
 - %2

3. www.stmopen.com
 - Internet Source
 - %2

 - Publication
 - %1

 - Publication
 - %1

 - %1
<table>
<thead>
<tr>
<th>Reference</th>
<th>Title and Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>www.scialert.net</td>
</tr>
<tr>
<td>8</td>
<td>www.science.gov</td>
</tr>
<tr>
<td>9</td>
<td>www.cabi.org</td>
</tr>
<tr>
<td>10</td>
<td>ijppr.com</td>
</tr>
<tr>
<td>12</td>
<td>Submitted to University of New England</td>
</tr>
<tr>
<td>13</td>
<td>www.developinginnovations.org</td>
</tr>
<tr>
<td>14</td>
<td>hua.huh.harvard.edu</td>
</tr>
<tr>
<td>15</td>
<td>Amitabye Luximon-Ramma. "Assessment of the polyphenolic composition of the organic extracts of Mauritian black teas: A potential</td>
</tr>
</tbody>
</table>
contributor to their antioxidant functions", BioFactors, 2006

www.wjgnet.com

www.apjtb.com

"Patent Application Titled "Carbohydrate Detection" Published Online (USPTO 20150212076).", Biotech Week, August 19, 2015 Issue

www.islandscholar.ca

T. Hiranita. "Suppression of methamphetamine-seeking behavior by
<table>
<thead>
<tr>
<th>Title</th>
<th>Source</th>
<th>URL</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>nicotinic agonists**, Proceedings of the National Academy of Sciences, 05/30/2006**</td>
<td>Publication</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Edible Medicinal and Non-Medicinal Plants, 2016.</td>
<td>Publication</td>
<td></td>
<td></td>
</tr>
<tr>
<td>rjptonline.org</td>
<td>Internet Source</td>
<td>rjptonline.org</td>
<td><1%</td>
</tr>
<tr>
<td>samsnyder.com</td>
<td>Internet Source</td>
<td>samsnyder.com</td>
<td><1%</td>
</tr>
<tr>
<td>www.growlife.com</td>
<td>Internet Source</td>
<td>www.growlife.com</td>
<td><1%</td>
</tr>
<tr>
<td>spandidos-publications.com</td>
<td>Internet Source</td>
<td>spandidos-publications.com</td>
<td><1%</td>
</tr>
<tr>
<td>www.sciencepub.net</td>
<td>Internet Source</td>
<td>www.sciencepub.net</td>
<td><1%</td>
</tr>
<tr>
<td>www.aensiweb.com</td>
<td>Internet Source</td>
<td>www.aensiweb.com</td>
<td><1%</td>
</tr>
<tr>
<td>www.japsonline.com</td>
<td>Internet Source</td>
<td>www.japsonline.com</td>
<td><1%</td>
</tr>
<tr>
<td>www.irjponline.com</td>
<td>Internet Source</td>
<td>www.irjponline.com</td>
<td><1%</td>
</tr>
<tr>
<td>"NTP-CERHR Expert Panel Update on the Reproductive and Developmental Toxicity of..."</td>
<td>Internet Source</td>
<td>"NTP-CERHR Expert Panel Update on the Reproductive and Developmental Toxicity of..."</td>
<td><1%</td>
</tr>
</tbody>
</table>
Di(2-ethylhexyl) phthalate", Reproductive Toxicology, 2006

Chun-Ching Lin. "The antiinflammatory and liver protective effects of Boussingaultia gracilis var. pseudobaselloides extract in rats", Phytotherapy Research, 06/1994

Irdhawati Irdhawati. "Cyclic Voltammetry of Ion Transfer for Phenylpropanolamine Hydrochloride at Water|Nitrobenzene Interface", Journal of the Chinese Chemical Society, 01/2012