2016 International Conference on Smart Green Technology in Electrical and Information Systems (ICSGTEIS)

CONFERENCE PROCEEDINGS

Advancing Smart and Green Technology to Build Smart Society

6 - 8 October 2016

Bali, Indonesia

Organized by
Department of Electrical and Computer Engineering
Postgraduate Study in Electrical and Computer Engineering
Udayana University

Technically Co-Sponsored by

[Logos of various organizations]
ORGANIZING COMMITTEE

General Chair:
- Linawati

Co-Chair:
- W. G. Ariastina
- Gede Sukadarmika

General Secretary:
- N. M. A. E. Dewi Wirastuti
- I. Gst. Agung Komang Diafari Djuni Hartawan
- I. G. A. Putu Raka Agung

Publication:
- Nyoman Putra Sastra
- I M. Arsa Suyadnya
- Duman Care Khrisne

Secretariat:
- I. B. Alit Swamardika
- I Nyoman Satya Kumara
- Nyoman Pramaita

Finance:
- I W. Sukerayasa
- I Nyoman Setiawan

Sponsorship:
- I M. Oka Widyantrara
- Widyadi Setiawan
TECHNICAL PROGRAM COMMITTEE

- Lie Jasa (Indonesia – Chair)
- I.A. Dwi Giriantari (Indonesia)
 - Eunice Sari (Australia)
- Daniel Churchill (Hongkong)
 - Naoto Yorino (Japan)
 - Yutaka Sasaki (Japan)
- Buyung Kosasih (Australia)
 - Taufik (USA)
- Chan Ying Hui (Singapore)
- Mazlina Esa (Malaysia)
- Takako Hashimoto (Japan)
 - Ken Umeno (Japan)
 - A Min Tjoa (Austria)
- Soo Young Shin (Korea)
 - Kondo Kunio (Japan)
- Manos M. Tentzeris (USA)
- Hugh Outhred (Australia)
- Maria Retnanestri (Australia)
 - B. T. Phung (Australia)
- T. R. Blackburn (Australia)
- Rukmi Sari Hartati (Indonesia)
 - Suprapta Winaya (Indonesia)
 - Made Sudarma (Indonesia)
- Ngakan Putu Gede Suardana (Indonesia)
 - Gunantara (Indonesia)
 - Agus Dharma (Indonesia)
 - Yoga Divayana (Indonesia)
 - Putu Alit Suthanaya (Indonesia)
 - Ontoseno Penangsan (Indonesia)
 - T. Basaruddin (Indonesia)
- Gamantyo Hendrantoro (Indonesia)
 - Yoke S. Iwaran (Indonesia)
- Mauridhi Hery Purnomo (Indonesia)
 - Ardyono Priyadi (Indonesia)
 - Dadang Gunawan (Indonesia)
 - Inggriani Liem (Indonesia)
- Royyana Muslim Ijtihadie (Indonesia)
 - Rudi Lumanto (Indonesia)
- I Ketut Eddy Purnama (Indonesia)
 - IGP Wirawan (Indonesia)
- Yoyon K. Suprapto (Indonesia)
- I Wayan Mustika (Indonesia)
- Soegijardjo Soegijoko (Indonesia)
- Wirawan (Indonesia)
- Dewa Made Wiharta (Indonesia)
- Oka Saputra (Indonesia)
- Kalvein Rantelobo (Indonesia)
- I Made Ginarsa (Indonesia)
TABLE OF CONTENTS

Welcome Message ... i
Organizing Committee .. ii
Technical Program Committee ... iii
Invited Talks ... v
Table of Contents .. viii

Learning Design and Digital Resources for STEM Education .. 1
Daniel Churchill

Frequency Response and Vibration Analysis in Transformer Winding Turn-to-Turn Fault Recognition .. 10
M. Bagheri, B. T. Phung

Modeling and Control of Permanent Magnet Synchronous Generator Variable Speed Wind Turbine ... 16
Ratna Ika Putri, M. Rifa’i, Lie Jasa, Ardyono Priyadi, Margo P, Mauridhi Heri P

Penetration Maximisation of Residential Rooftop Photovoltaic using Demand Response 21
Md Moktadir Rahman, Ali Arefi, GM Shafiullah, Sujeewa Hettiwatte

Voltage Harmonic Effect on Losses in Distribution Transformers .. 27
Thinh Dao, H. Abdull Halim, Z. Liu and B.T. Phung

Phase Arrangement for 500kV Quadruple Circuit Transmission Line in Indonesia 33
Aristo Adi Kusuma, Putu Agus Aditya Pramana, Buyung S. Munir

Transformer Inrush Transients Using Jiles-Atherton Model in PSCAD/EMTDC 38
H. Abdull Halim, Thinh Dao, B.T. Phung, and J.E. Fletcher

Spatial Multiplexing using Walsh-Hadamard Transform .. 43
Man Hee Lee, Muhammad Basit Shahab, Md Fazlul Kader and Soo Young Shin

Performance Evaluation of Wideband Radio Communication Systems Using Almost Periodic Frequency Arrangement ... 47
Isao Nakazawa, Ken Umeno

Swapped Huffman Tree coding Application for Low-Power Wide-Area Network (LPWAN) 53
Jang Yun Seong, Muhammad Rehan Usman, Muhammad Arslan Usman and Soo Young Shin

Performance Comparison of DFT and DWPT based OFDM system using 64 DAPSK 59
Arslan Khan, Muhammad Rehan Usman, Muhammad Basit Shahab, Hye Yeong Lee, Ummi Khaira Latif and Soo Young Shin
New Expression of SNR Formula for CDMA System .. 64
Hirofumi Tsuda, Ken Umeno

An Approach for Selecting Optimum Number of Base Stations using Harmony Search 69
I Made Oka Widyantara, I Kadek Susila Satwika, I Made Oka Widyantara, Nyoman Pramaita

From Smart to Smarter Cities: Bridging the Dimensions of Technology and Urban Planning ... 74
Selin Akaraci, Muhammad Arslan Usman, Muhammad Rehan Usman, and Dong Joon Ahn

OLAP Applications as Knowledge Management Tools on E-Health ... 79
Ida Bagus Gede Dwidasmara, Kadek Cahya Dewi, I Putu Agustina

Environmental Monitoring as an IoT Application in Building Smart Campus of Universitas Udayana .. 85
Nyoman Putra Sastra, Dewa Made Wiharta

Proposed Model For E-Exam Availability In WLAN Environment ... 89
Gede Sukadarmika, Rukmi Sari Hartati, Linawati, Nyoman Putra Sastra, Dewa Made Wiharta, Made Agus Setiawan

Integration of E-Government Blue Prints Through GIS-Building Data Collection
Implementation in Badung Regency ... 93
Jatmiko Wahyu Nugroho Joshua, I Putu Agus Swastika, Komang Wahyu Trisna

Adaptive Online Learning Design Using Moodle .. 98
Linawati, N.M.A.E.D. Wirastuti, Gede Sukadarmika, I Made Arsa Suyadnya, Duman Care Khrisne

On the Performance of Perfect and Imperfect SIC in Downlink Non Orthogonal Multiple Access (NOMA) .. 102
Muhammad Rehan Usman, Arsla Khan, Muhammad Arslan Usman, Yun Seong Jang and Soo Young Shin

Simulink Implementation of Non-orthogonal Multiple Access over AWGN and Rayleigh Fading Channels .. 107
Muhammad Basit Shahab, Md Fazlul Kader, Man Hee Lee, Soo Young Shin

Network Performance Framework Analysis Multi Protocol Label Switching (MPLS) in Wireless Network .. 111
Candra Ahmadi, Joko Lianto Buliali, Achmad Affandi

Study on Emergency Message Communication System for Ensuring Safety in Antarctica under Extremely Severe Environments ... 116
Kiyoshi Igarashi, Ken Umeno, Masaki Okada, and Masayuki Kikuchi

Performance Comparison of MC-SS MIMO and OFDM MIMO Systems on Selective Fading Channel .. 120

On the Proposal of Novel Transmit Scheme with Impedance Switching 127
Hye Yeong Lee, Arsla Khan, Soo Young Shin
Lesson Learned from Badak LNG Process Plant Trip Due to Sea Cooling Water System Failure ... 131
Iqbal Nusya Perdana

New Design Banki’s Water Turbine Model for Pico Hydro in Tabanan Bali .. 136
Lie Jasa, Putu Ardana

Design of a GPS-Based Solar Tracker System for a Vertical Solar Still ... 140
Dian Artanto, A. Prasetyadi, Doddy Purwadianta, Rusdi Sambada

Evaluation of Transmission Line Parameter for Non Horizontal Earth Contour ... 144
Putu Agus Aditya Pramana, Aristo Adi Kusuma, Buyung Sofiarto Munir

DC/AC Power Converter for Home Scale Electricity Systems Powered by Renewable Energy .. 149
Faizal Arya Samman, Arie Azhari

Architecture, On-Chip Network and Programming Interface Concept for Multiprocessor System-on-Chip ... 155
Faizal Arya Samman, Bjørn Dollak, Jonatan Antoni, Thomas Hollstein

Context Modeling for Intelligent Building Energy Aware ... 161
Gusti Agung A. Putri, Lukito Edi Nugroho, Widyawan

Prototype of Fire Detection System in Wireless Transmission Environment .. 167
Made Dita Rahayu Putri, Linawati, I Made Oka Widyantara

Selection of Mother Wavelet for Medical Image Compression .. 171
I Made Oka Widyantara, I Gusti Ayu Garnita Darma Putri, Nyoman Putra Sastra, N.M.A.E.D Wirastuti

Smart Microgrid System with Hybrid System Supply: Udayana University Pilot Project Design ... 178
IAD. Giriantari, Rina Irawati

Characterization of Titanium Dioxide (TiO2) thin films as materials for Dye Sensitized Solar Cell (DSSC) ... 182
I Nyoman Setiawan, Ida Ayu Dwi Giriantari, W. Gede Ariastina, IB Alit Swamardika and Agus Selamet Duniaji

Opinion Mining System with Pos Tagging and SVM Method for Data Extraction Services Public Opinion on Bali Mandara Health Insurance .. 187
Luh Ria Atmarani, I.A. Dwi Giriantari, Made Sudarma

Design and Balancing Load Current in 3 – Phase System using Microcontroller ATMEGA 2560 .. 193
C.G.I. Partha, IGAP Raka Agung, IM Arsa Suyadnya

Evaluation of NAS Infrastructure at Centralized Network Architecture ... 198
Made Sudarma, Dandy Pramana Hostiadi
Adaptive Online Learning Design Using Moodle

Linawati, NMAE Dewi Wirastuti, G. Sukadarmika, IM Arsa Suyadnya, Duman Care Krishne
Department of Electrical and Computer Engineering
Udayana University
Bali - Indonesia

Abstract—The paper proposed adaptive learning design using LMS Moodle with eliminating complexity for technical works. The selection of Moodle was done based on its features and it has been utilized in Udayana University. Therefore the usage of Moodle will achieve effectiveness of adaptive online learning system. The proposed approach combines two evaluations and two testing, in order to improve its adaptive capability to accommodate various type of learners’ style.

Keywords— adaptive learning system, Moodle, formative evaluation, summative evaluation

I. INTRODUCTION

No doubt that Internet has become basic need in daily life which changes people way of life. Rapid development of Internet has become global and interactive media for information sharing. Additionally it is happen in learning process that push many education institutions to implement e-learning, online learning, or web based learning for their learning activity. Then many open course wares (OCWs) have been developed which trigger development of MOOCS, Coursera, Khan Academy, etc.

Due to swift technology development, e-learning is required to be more effective and efficient by satisfying individual style and capability. The learning process and its technology usage should fulfill various type of students, and could operate on various devices, networks, learning activities, and in any environment. Therefore adaptive online learning could be one of the solutions. In addition, for instance many MOOCS have to enhance their learning models to boost adaptive and personalized learning [1], if they want to be more influential both in developed countries and developing countries. The Authors [1] suggested to approach teaching strategies of MOOCS from five dimensions, i.e. model of teaching, adaptive learning, certification, monetization, and the strategy model for developing countries. Then MOOCS should offer various type of accreditation. However these modification are still an open area to explore.

Traditional e-learning has been implemented in Udayana University since year 2008. However its implementation target is under expectation. In fact most of lecturers in the University understand the important of e-learning [2]. However there are less than 10% of courses in Udayana University in the form of e-learning.

Udayana University has the most number of international students among universities in Indonesia. However there are no e-learning course developed for international students. Therefore Udayana University is very keen to design and implement adaptive online learning especially for international students. The University has enough units and capacity to boost the development, such as Udayana Center for Learning Innovation and Institution of Academic Quality Development or LP3M. By improving e-learning strategy to be adaptive e-learning, Udayana University will have more online courses that meet various type of learners. Hence in this paper will propose adaptive online learning design by using LMS Moodle for international students in Udayana University.

II. ADAPTIVE LEARNING CONCEPT

According to [3] that adaptive learning is a capability of learning system to change its process automatically according to users or students based on the students’ assumptions. The capability of the system to adjust itself automatically can be developed if user model has been portrayed [4]. Adaptive learning system should have adaptable characteristic which give students opportunity to modify the system. Then adaptive e-learning has three main components, i.e. domain model, user model, and adaption model [5]. Adaptive e-learning technology basically is a mix of hypermedia technology and adaptive system. An adaptive system should accommodate user characteristics and then are stored into a user model. After that the information will be used by the system as a basis information for course delivering. The user model is developed by monitoring and analyzing their interaction, the way their browsing, and their assessment results [6].

User model is claimed to be the most important component in an adaptive e-learning system. The user model function is to capture and store user information and user profile [7]. There are six functions of user model that identified by [8], i.e. Corrective, Elaborative, Strategic, Diagnostic, Predictive, and Evaluative function. Generally, there are two methods to represent user information. The methods are overlays model and Bayesian network model. In term of the method approach, for long-term approach are stereotypes, overlays and perturbation models. Then for short-term approach, there are model tracing and CBM model.

III. ADAPTIVE ONLINE LEARNING IMPLEMENTATION

Many researches have analysis on affectivity of elearning. Implementation of adaptive e-learning results better academic achievements of students than non-adaptive e-learning [9]. The same results have been shown by Triantafillou, et.al [10] and Bajraktarevic, et.al [11]. On the other hand, in [12] and [13] showed that online learning produced negative results,
especially for post-graduate students. For learning concept or theory, online learning had better result than offline learning. On the contrary, offline learning had better results than online learning for laboratory or experiment activity.

In general, adaptive learning implementation can be categorized into two groups, i.e. an adaptive presentation and an adaptive navigation support or link [5]. Adaptive presentation is a tailored of web content such as adaptive text and adaptive multimedia. In Addition adaptive navigation support is a technique to modify web link by users in certain time [14].

Adaptive online learning has been hard to implement by teachers who have not enough technical skill [15]. It is challenging to develop adaptive learning system for teachers or instructors with no technical background. The authors have proposed IMS-LD with five phases as a solution of the learning system, i.e. (1). Diagnostic evaluation concerning prior knowledge and learning style; (2). Presentation of the new knowledge; (3). Test new knowledge; (4). Synthesize knowledge and reflect; and (5). Apply knowledge. An adaptive instruction model and adaptability according to a learning style were proposed by [16]. In this model the learning content was categorized into conceptual knowledge, principal knowledge, and procedural knowledge. The instruction model and the learner’s learning style was merged.

Research on efficiency of adaptive online learning has been carried out by [17]. The research combined two algorithms which are adaptive online learning algorithm and algorithm of efficiency seeking of learning system. The first algorithm was to enhance the ability to select dynamically an appropriate learning object for various type of learners. Then the second algorithm was to choose a learning path with saving costs, time and effort. Representative approaches to combine two algorithms were implemented. An adaptive environment creation for online learners become research focus of [18]. They recognized key steps and requirements in applying business intelligence techniques in process of personalization. Effect Size (ES) tool was applied to analyze effectiveness of Intelligent Tutoring System (ITS) and Adaptive Hypermedia Systems (AHS) in [19]. ES was a tool to compare the output of pedagogical experiment of the systems with the purpose of showing a significant improvement in the learning process of students when adaptive learning was implemented.

A custom of LMS Moodle was used in an adaptive e-learning implementation [20] and then the implementation was evaluated its performance in term of its all adaptation functionalities. The Author [20] utilized VAK (Visual, Auditory, and Kinesthetic) and Felder learning styles included global and sequential in the implementation. A set of questionnaire was filled in by the students to identify their learning style preferences. Then the scores were applied the system as basis of types of learning materials presentation. Authors [21] proposed theoretical framework ALMS-Adaptive Learning management System which stressed on three points. The first point was extracting the knowledge from the use's interaction, behavior and actions and translate them into semantics which are represented as Ontologies. The second point was to find the Learner style from the knowledge base. The final point was deriving and composing the workflow depending upon the learner style. All framework modules have beneficial from the intelligent agents’ application. Next research is a usage of an ontology based approach to augment adaptive e-learning system based on the semantic content design, learner and domain models to accommodate various type of learners [22]. They chose ontology model, as its capability developed content design and learner models needed to establish adaptive e-learning system. The key focus was to propose new adaptive e-learning with its ability to accommodate various characteristics of learner’s ability, learning style, preferences, and knowledge levels. The ontology model through its ontology user profile can be updated automatically based on increase of learner’s abilities.

Different approach for dynamic and adaptive learning system utilization was offered by [23]. A multi-agent architecture that provides the key functions of the learning system was recommended. It has five agents, i.e. the Student Agent, Record Agent, Modelling Agent, Learning Object Agent, and Evaluation Agent. Each agent was meet a certain functional requirement that contributes to overall learning system. The uniqueness of each agent was autonomous and has its own social ability.

WELSA - Web-based Educational system with Learning Style Adaptation was investigated in [24] in building adaptive learning system. It consist of three key modules. Firstly, an authoring tool for the teachers that providing them to create courses conforming to the internal format. Secondly, a tool to analyze data was used to analyze the behavior of the students and consequently building and updating the learner model, as well as providing various aggregated information about the learners. Finally a course player that was basic learning management system for the students. Other scheme that included Learner state, the Educational Activity state, the Infrastructure state and the Environment state was explored in [25] to formulate an adaptive context-aware pervasive and ubiquitous learning system as a system of an adaptation engine with input and output. All the states were input to adaptation engine which was applied deterministic or probabilistic adaptation decisions. Then the output was the adapted educational activity and/or infrastructure, such as learner’s position and its available network. Additional investigation of comparisons on three adaptive learning style scenarios, namely matching, compensating and monitoring is presented by [26]. Different modes were operated for the scenarios. Design-time mode was used for matching and compensating scenarios. Meanwhile a run-time adaptation mode was implemented for monitoring scenario. All scenarios were investigated in term of their effectiveness in adaptive learning styles. They found that the monitoring adaptation produced higher learning achievements when compared to other adaptation, although no significant effect was found. Design research or process research method and experimental research method were adopted in the paper as a research design. Finally, Paper [27] analyzed metadata standards to reuse of learning objects in the educational domain. Adaptive content with its management and reuse was explored using the
metadata standards. The schemas were designed to be independent of the pedagogical model underlying the adaptively.

IV. PROPOSED ADAPTIVE LEARNING DESIGN USING LMS MOODLE

Adaptive learning using LMS Moodle will be implemented for one or two courses for international students in Udayana University. Two evaluation steps are going to apply, i.e. formative evaluation and summative evaluation. The formative evaluation will be done at developing process of the course. In addition the summative evaluation will be used at the end of the course. Both evaluation aim to improve the course and to measure its affectivity. Figure 1 display research steps.

![Fig. 1. Adaptive Learning Design Steps](image)

Analyze step is required to identify the system need and its performance. Then design step which includes system’s architecture, use case diagram, teacher case diagram, and student case diagram, is analyzed. Next step is to custom LMS Moodle during implementation step by adopting investigation of Moodle suitability for adaptive learning system [18]. Table 1 shows the adoption. Both evaluation are applied using two testing models, i.e. alpha testing and beta testing. The alpha testing is performed by experts or teachers, and beta testing is accomplished by users or learners. Revision or modification step is executed starting from design step until implementation step that are based on evaluation results.

Alpha testing will involve application developer, instructional designer, content developer, and media expert. A set of questionnaire will be designed to be used in alpha testing that will analyze content, interface, media selection, pedagogy, hidden feature, navigation, and performance. Formative or on-going evaluation is implemented in combination with alpha testing and beta testing. Then beta testing is implemented together with summative evaluation. All evaluations and testing are mainly focused on learning style of students.

LMS Moodle has been installed and used since 2008 in Udayana University. It can be accessed in http://elearning.unud.ac.id. In this learning design, four Moodle features will be activated, i.e. resource, forum activity, assignment activity, and survey. Next a use case diagram which presents access role of students, teachers, and system administrator as shown in Figure 2, is outlined to be implemented and evaluated.

![Fig. 2. Use Case Diagram](image)

TABLE I. MOODLE SUITABILITY FOR ADAPTATION [18]

<table>
<thead>
<tr>
<th></th>
<th>Active</th>
<th>Reflex</th>
<th>Visual</th>
<th>Verbal</th>
<th>Sequent</th>
<th>Global</th>
<th>Sensitiv</th>
<th>Intuitive</th>
</tr>
</thead>
<tbody>
<tr>
<td>Forum</td>
<td>Concre</td>
<td>Topics for thinking</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Chat</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Forum</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Works hop</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Survey</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Close</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Course</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Admin</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Student</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Teacher</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Administrator</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>

The administrator has privileges to modify the system, however has no capability as a content provider. On the other hand the teacher has to provide course content, assignments, and to use all learning features of LMS Moodle. Then the students has limited access to the system. They only could read the contents, to participate in discussion forum, to submit the assignments, and to fill all questionnaires. Finally guest has no access to the system.

V. CONCLUSIONS

Adaptive learning design using LMS Moodle has been presented. Such proposed design and approaches are simple to be implemented without involving complexity for technical works. LMS Moodle has been applied in Udayana University, thus by using LMS Moodle will improve the system in term of effectiveness. The proposed approach consists of two evaluations and two testing, in order to improve its adaptive capability to accommodate various type of learners’ style.

The implementation will be our next research focus. Thus the affectivity of the system would be found and analyzed after the implementation phase.
ACKNOWLEDGMENT

The research project was funded by the Indonesian Government through LPPM of Udayana University under Hibah Unggulan Udayana. Therefore Authors would like to express their gratitude to the LPPM.

REFERENCES

[19] Elena Verdu, Luisa M. Reginar, Maria Jesus Verdu, Juan Pablo De Castro, Maria Angeles Peres, Is Adaptive Learning Effective? A Review of the Research, 7th WSEAS Int. Conf. on Applied Computer & Applied Computational Science (ACACOS ‘08), Hangzhou, China, April 6-8, 2008, pp. 710 – 715
[23] Shanghua Sun, Mike Joy, and Nathan Griffiths, An AgentBased Approach to Dynamic Adaptive Learning