

CLINICAL NEUROLOGY AND NEUROSURGERY

p.1

p.1

p.1

p.2

p.4

AUTHOR INFORMATION PACK

TABLE OF CONTENTS

- Description
- Impact Factor
- Abstracting and Indexing
- Editorial Board
- Guide for Authors

ISSN: 0303-8467

DESCRIPTION

Clinical Neurology and Neurosurgery is devoted to publishing papers and reports on the clinical aspects of **neurology** and **neurosurgery**. It is an international forum for papers of high scientific standard that are of interest to Neurologists and Neurosurgeons world-wide.

Professor Peter Paul De Deyn, Scientific Director of the Institute Born-Bunge at the University of Antwerp, Belgium, is the Editor-in-Chief. The journal has a broad international perspective.

Types of Papers:

Reviews

• Neurological progress, concerning new developments in the field of clinical neurology and neurosurgery

- Special articles, written by invited authors
- Original articles, full-length papers devoted to the scope and purpose of the journal

• Case histories, reporting unusual clinical syndromes or diseases. These papers should be no less than 3 pages print, not including illustrations and tables

- Letters to the Editor, comments on articles in Clinical Neurology and Neurosurgery
- Book reviews
- Announcements are carried at the Editor's and Publisher's discretion.

IMPACT FACTOR

2020: 1.876 © Clarivate Analytics Journal Citation Reports 2021

ABSTRACTING AND INDEXING

PubMed/Medline Current Contents - Clinical Medicine MPPS (Medical and Psychological Previews) Embase Scopus PubMed/Medline Science Citation Index

EDITORIAL BOARD

Editors-in-Chief

P.P. De Deyn, ZNA Middelheim Neurology, Volhardingstraat 88-90, 2020, Antwerpen, Belgium, Fax: +32-3-281-37-48

F. Roser, Cleveland Clinic Abu Dhabi Neurological Institute, P.O.Box 11 24 12, Abu Dhabi, United Arab Emirates

Associate Editors

J.G. Burneo, Western University, London, N6A 3K7, Ontario, Canada

P. W. Hitchon, University of Iowa Hospitals and Clinics Department of Neurosurgery, Iowa City, Iowa, United States of America

P. Jabbour, Thomas Jefferson University Hospital, 19107-4824, Philadelphia, Pennsylvania, United States of America

M. Mondelli, USL Tuscany southwest Siena unit, Electromyography and Evoked Potentials Service, EMG Service, Via Pian d'Ovile 9,, 53100, Siena, Italy

M. Sughrue, Prince of Wales Private Hospital, Barker Street, Randwick, 2031, Australia

Advisory Editor

C.S. Raine, Albert Einstein College of Medicine, Bronx, New York, United States of America

Editorial Board

J.M. Abdullah, Kota Bharu, Malaysia

- F. Acerbi, Milano, Italy
- D. Adamek, Krakow, Poland
- F. Al Saiegh, Philadelphia, Pennsylvania, United States of America
- G. W. Albert, Little Rock, Arkansas, United States of America
- **G.A. Alexiou**, Ioannina, Greece

M. Ammirati, Columbus, Ohio, United States of America

A. Arboix, Barcelona, Spain

M.J.H. Aries, Groningen, Netherlands

- N. A. Arora, Columbia, Missouri, United States of America
- E. Beghi, Milan, Italy
- J. D. Bland, Canterbury, United Kingdom
- J. Bogousslavsky, Lausanne, Switzerland
- W. Boling, Loma Linda, California, United States of America
- T. Brinker, Providence, Rhode Island, United States of America
- R. Brouns, Brussel, Belgium
- M. Bydon, Rochester, Minnesota, United States of America
- P. Cappabianca, Napoli, Italy
- M. de Carvalho, Lisboa, Portugal
- N. Dahdaleh, Chicago, Illinois, United States of America
- P. De Bonis, Ferrara FE, Italy
- A. Demetriades, Edinburgh, United Kingdom
- J. Donahue, Providence, Rhode Island, United States of America
- M. S. Eksi, İstanbul, Turkey
- S. Engelborghs, Antwerp, Belgium
- J. Favre, Vevey, Switzerland
- J. Finsterer, Wien, Austria
- K. N. Fountas, Larissa, Greece
- M. Fusco, Nashville, Tennessee, United States of America
- V. Gerganov, Hannover, Germany
- A. Ghaffari-Rafi, Sacramento, California, United States of America
- J.E. Greenlee, Salt Lake City, Utah, United States of America
- L.H-B. Hacein-Bey, Sacramento, California, United States of America
- M. L. Hlavin, Iowa City, Iowa, United States of America
- C. M. Igram, Iowa City, Iowa, United States of America
- Y. Izci, Ankara, Turkey
- D. Jakimovski, Buffalo, New York, United States of America
- **S. John**, Abu Dhabi, United Arab Emirates
- M. K. Kasliwal, Cleveland, Ohio, United States of America
- S. N. Linsler, Homburg, Germany
- **Y.L. Lo**, , Singapore
- W.O. Lüdemann, Hannover, Germany
- L. Marshman, Townsville, Queensland, Australia
- **D. Mathieu**, Sherbrooke, Quebec, Canada
- D. Mc Arthur, Los Angeles, California, United States of America
- A. H. Menezes, Iowa City, Iowa, United States of America

- A. Michotte, Brussel, Belgium
- M.L.R. Monteiro, São Paulo, Brazil
- Y. Morofuji, Omura, Japan
- M. Nakamura, Hannover, Germany
- R. Navarro, Dubai, United Arab Emirates
- F. Oliveira, SAO PAULO, Brazil
- H.L. Rekate, Phoenix, Arizona, United States of America
- A. Roman, Abu Dhabi, United Arab Emirates
- F. M. Santorelli, Colombarone, Italy
- A. Seifi, San Antonio, Texas, United States of America
- R. Sheorajpanday, Antwerp, Belgium
- M. Socolovsky, Buenos Aires, Argentina
- J. Sotelo, Mexico City, Mexico
- D. Chr. Tafiadis, Ioannina, Greece
- S. Takahashi, Tokyo, Japan
- M. de Visser, Amsterdam, Netherlands
- S.G. Waxman, New Haven, Connecticut, United States of America
- E.F.M. Wijdicks, Rochester, Minnesota, United States of America
- R. Xie, Shanghai, China
- S. Yamaguchi, Iowa City, Iowa, United States of America

CLINICAL NEUROLOGY NOROSORGERA	Clinica Supports op	al Neurolo	gy and Neuros	urgery	
Articles & Issues 🗸	About 🗸	Publish 🗸	Order journal 🗸	Q Search in this journal	Su

In progress (October 2021)

This issue is in progress but contains articles that are final and fully citable.

🛃 Download full issue

Actions for selected articles

Receive an update when the latest issues in this journal are published

Clinical Neurology and Neurosurgery Supports open access Articles & Issues 🗸 About 🗸 Publish v Order journal 🗸 Search in this journal Q ☐ Sign in to set up alerts Actions for selected articles Select all / Deselect all Reviews Download PDFs Export citations Review article O Abstract only Show all article previews Characteristics and risk factors of lower urinary tract dysfunction in patients with Parkinson's disease: A systematic evaluation and meta-analysis Hongxia Zhuang, Xueqi Wang, Hao Xu, Xiaolei Jing, Jiajia Yue Contents Article 106885 Article preview 🗸 . ▶ Purchase PDF Reviews Original articles Review article O Abstract only Efficacy and safety of anti-calcitonin gene-related peptide monoclonal antibodies for treatment Case reports chronic migraine: A systematic review and network meta-analysis Letters to editors Prashant Soni, Evanka Chawla Article 106893

Submit your article ٦
Guide for authors 🏼

 \wedge

Supports open access

Articles & Issues V About V	
Actions for selected articles Select all / Deselect all	Review article O Abstract only Endovascular management of ruptured choroidal aneurysms two-patient case report & review of the literature Sarath Pathuri, Pavel Rodriguez, Justin R. Mascitelli Article 106906
Download PDFs Export citations	✓ Purchase PDF Article preview ∨
 Show all article previews 	Review article O Abstract only
Contents	Air-embolism in the semi-sitting position for craniotomy: A single centers experience Boris Tufegdzic, Massimo Lamperti, Amira Siyam, Florian Roser Article 106904
Reviews Original articles	✓ Purchase PDF Article preview ∨
Case reports	Review article O Abstract only
Letters to editors	Intraneural ganglion cyst of the common peroneal nerve caus Senne Broekx, Robin Van Der Straeten, Bob D'Haen, Jan Vandevenne, Frank W

Article 106915

Submit your article 🖪

Guide for authors $\, \mathbf{7} \,$

associated with moyamoya syndrome: A

narrative review with emphasis on a

using foot drop in a 12-year old child

About 🗸

Supports open access

Search in this journal

Actions for selected articles Select all / Deselect all

Articles & Issues 🗸

Download PDFs

Export citations

Show all article previews

Contents

Reviews

Original articles

Case reports

Letters to editors

Original	articles
----------	----------

Publish v

Research article O Abstract only

Order journal 🗸

Grip training improves handgrip strength, cognition, and brain white matter in minor acute ischemic stroke patients

Q

Xinyuan Shang, Xianyue Meng, Xinxing Xiao, Zhentao Xie, Xiaoling Yuan Article 106886

Article preview V . ▶ Purchase PDF

Research article O Abstract only

Functional gait measures correlate to fear of falling, and quality of life in patients with Hereditary Spastic Paraplegia: A cross-sectional study Heiko Gaßner, Julia List, Christine F. Martindale, Martin Regensburger, ... Zacharias Kohl Article 106888

Article preview V

Submit your article 🖊 Guide for authors 7

Supports open access

Articles & Issues 🗸 🛛 About 🗸	Publish 🗸 Order journal 🗸 🔍 Search in this journal
Actions for selected articles Select all / Deselect all	 Research article o Abstract only Modified ICH score was superior to original ICH score for assoutcome of non-traumatic intracerebral hemorrhage I.Putu Eka Widyadharma, Angga Krishna, Andreas Soejitno, A.A.A. Putri Laksmide Article 106913
Export citations	▲ Purchase PDF Article preview
 Show all article previews 	Research article o Abstract only Brain MRI volumetric changes in the follow-up of patients wi
Contents	Enrique Gomez-Figueroa, Christian Garcia-Estrada, Elma Paredes-Aragon, Jorge S Article 106908
Reviews	▲ Purchase PDF Article preview
Original articles	
Case reports	Nerve capping treatment using a bioabsorbable nerve conduit
Letters to editors	neuroma
	Shunpei Hama, Takuya Uemura, Ema Onode, Takuya Yokoi, Hiroaki Nakamura

Article 106920

Submit your article 🞵

Guide for authors \neg

ssessment of 30-day mortality and good

ewi, ... I.A. Sri Indrayani

ith anti-NMDAr encephalitis Salado-Burbano, ... José Flores-Rivera

it with open or closed end for rat sc

55 Cite

References

Show full outline 🗸

Figures (2)

https://doi.org/10.1016/j.clineuro.2021.106913

+ Add to Mendeley 😪 Share

- Tables (5)
- 🖽 Table 1
- 🖽 Table 2
- 田 Table 3
- 田 Table 4
- ⊞ Table 5

Highlights

- ICH score had not been used to predict good outcome or significant disability for those who were alive.
- Modified ICH (mICH) score was aimed to increase prediction accuracy for mortality, significant disability, and good outcome.
- mICH score was superior to the original version for predicting 30-day mortality, significant disability, and good outcome.
- This study had been the largest that involved Asian patients.

Abstract

Introduction

Intracerebral hemorrhage (ICH) score has been widely used as a

Search ScienceDirect

consistent and reliable clinical grading scale for predicting mortality. However, ICH score had not been used to predict good outcome or significant disability for those who were alive. We intended to address whether any modifications would increase prediction accuracy for mortality as well as the extent of morbidity for those who survived.

Methods

盫

We conducted a retrospective cohort study, involving all non-traumatic ICH patients admitted to our hospital between September 2018 and July 2020. All non-traumatic ICH patients who were admitted to the stroke unit and registered in our stroke database had their medical records, neuroimaging, and laboratory test results reviewed. Only patients with complete medical records and available CT imaging and laboratory test results were included in our study. Independent predictors of mortality (modified Rankin scale/mRS of 6) or good outcome vs. significant disability (mRS≤2 vs. mRS 3–5, respectively) were identified by logistic regression. A modified ICH (mICH) score was compared with the original ICH (oICH) score for its diagnostic performance (DP). Overall DPs were graded and ranked according to Youden Index (YI).

Results

Search ScienceDirect

COUNTRY

Netherlands

Universities and research institutions in Netherlands

H-INDEX

TIT

73

SUBJECT AREA AND CATEGORY

Medicine

- Medicine (miscellaneous)
- Neurology (clinical)
- Surgery

PUBLICATION TYPE

Journals

PUBLISHER

Elsevier

ISSN

03038467, 18726968

Ads by Google
Stop seeing this ad Why this ad? ①

Contents lists available at ScienceDirect

Clinical Neurology and Neurosurgery

journal homepage: www.elsevier.com/locate/clineuro

Modified ICH score was superior to original ICH score for assessment of 30-day mortality and good outcome of non-traumatic intracerebral hemorrhage

I.Putu Eka Widyadharma^{a,*}, Angga Krishna^a, Andreas Soejitno^a, A.A.A. Putri Laksmidewi^a, Kumara Tini^b, I.B. Kusuma Putra^a, I.G.N. Budiarsa^a, I.A. Sri Indrayani^a

^a Neurology Department, Faculty of Medicine Udayana University/Sanglah Hospital, 80114 Denpasar, Bali

^b Neurology Department, Faculty of Medicine Udayana University/Udayana University Hospital, 80361 Badung, Bali

ARTICLE INFO

Keywords: Intracerebral hemorrhage Modified ICH score Original ICH score 30-day mortality Good outcome

ABSTRACT

Introduction: Intracerebral hemorrhage (ICH) score has been widely used as a consistent and reliable clinical grading scale for predicting mortality. However, ICH score had not been used to predict good outcome or significant disability for those who were alive. We intended to address whether any modifications would increase prediction accuracy for mortality as well as the extent of morbidity for those who survived.

Methods: We conducted a retrospective cohort study, involving all non-traumatic ICH patients admitted to our hospital between September 2018 and July 2020. All non-traumatic ICH patients who were admitted to the stroke unit and registered in our stroke database had their medical records, neuroimaging, and laboratory test results reviewed. Only patients with complete medical records and available CT imaging and laboratory test results were included in our study. Independent predictors of mortality (modified Rankin scale/mRS of 6) or good outcome vs. significant disability (mRS \leq 2 vs. mRS 3–5, respectively) were identified by logistic regression. A modified ICH (mICH) score was compared with the original ICH (oICH) score for its diagnostic performance (DP). Overall DPs were graded and ranked according to Youden Index (YI).

Results: As many as 311 patients were eligible with both 39.9% rate of 30-day mortality and good outcome. Factors independently associated with mortality were low GCS and high NIHSS on admission (P = 0.002, <0.001, respectively), and presence of respiratory failure (P < 0.001). Independent factors for good outcome were low NIHSS on admission and mass effect (midline shift > 5 mm) [both P < 0.001]. A modification of ICH score from the original was made by substituting GCS with NIHSS (0 -10 = 1; 11 - 20 = 2; >20 = 3), changing age cut-off point to > 55 years old (= 1), and adding respiratory failure (= 1), and mass effect (= 1). Overall, mICH scored better over oICH score with respect to sensitivity and had comparable specificity for both 30-day mortality and good outcome (sensitivity 80.6% vs. 50.8%; specificity 88.7% vs. 89.3%; YI 0.69 vs. 0.40, respectively) and good outcome (sensitivity 86.3% vs. 77.4%; specificity 74.6% vs. 77.8%; YI of 0.61 vs. 0.55, respectively). There was only one patient with oICH and none on mICH score of 0, who died and none survived with oICH and mICH score of ≥ 5 and ≥ 7 , respectively. The proportion of 30-day mortality and good outcome increased in a more linear fashion with mICH score.

Conclusions: The mICH score was proven to be reliable and consistent as a risk grading assessment for non-traumatic ICH patients. The mICH was statistically superior to oICH score in predicting 30-day mortality and good outcome.

1. Introduction

Non-traumatic intracerebral hemorrhage (ICH) accounts for approximately 10–20% of all causes of stroke [1]. Despite there have

been some advances in the knowledge of the natural history, treatment approach, and thereby prognosis of ICH patients, its morbidity and mortality rate remain relatively high [2]. There have been attempts to employ several ICH prognostication models, yet some of them requires

https://doi.org/10.1016/j.clineuro.2021.106913

Received 14 June 2021; Received in revised form 9 August 2021; Accepted 18 August 2021 Available online 28 August 2021 0303-8467/© 2021 Elsevier B.V. All rights reserved.

^{*} Correspondence to: Jl. Diponegoro, 80114 Denpasar, Bali. *E-mail address:* eka.widyadharma@unud.ac.id (I.PutuE. Widyadharma).

complex mathematical equation, ergo rendering it less practical in the clinical settings where rapid calculation is paramount to make a prompt but accurate informed-decision making [3]. Among the currently available prognostication models, ICH score devised by Hemphill et al. [4] being the simplest yet relatively accurate for wide ICH populations. However, it possesses several limitations, particularly related to Indonesian population, i.e. a recent attempt to validate oICH score among Indonesian population did not yield satisfactory prediction accuracy, with significant discrepancies in several parameters. The oICH score also lacks the ability for predicting good outcome and significant disability among those who survive, thus restricting its use for prediction of mortality per se, while seemingly omitting the well-being of the survivors.

In light of the aforementioned issues, herein we had attempted to address the significant factors associated with 30-day mortality, significant disability, and good outcome among Indonesian ICH patients, and subsequently devised a modified ICH (mICH) score followed by head-tohead comparison with oICH score thereafter.

2. Methods

2.1. Study design

This was a retrospective cohort study conducted at Sanglah Hospital, Denpasar, Bali between September 01 2018 to July 31 2020. This study had passed ethical clearance from the Ethics Committee on Human Research, Faculty of Medicine Udayana University. Written consent was obtained from patients and/or their caregivers after receiving a full explanation regarding the study. All non-traumatic ICH patients who were admitted to the stroke unit and registered in our stroke database had their medical records, neuroimaging, and laboratory test results reviewed. Only patients with complete medical records and available CT imaging and laboratory test results were included in our study.

2.2. Data extraction and operational variables

Several categories of data were abstracted from each patient, comprising demographics (age and sex), stroke comorbidities and risk factors (hypertension, diabetes mellitus, chronic cerebral infarction, hypertensive heart disease, atrial fibrillation, renal function impairment, respiratory failure [respiratory failure was defined as an impairment of gas exchange functions, marked by partial pressure of oxygen lower than 60 mmHg (hypoxemic failure or type 1) or partial carbon dioxide pressure higher than 50 mmHg (hypercapnic failure or type 2) as determined by arterial blood gas analysis within the first 5 days of stroke onset] [5], metabolic acidosis, smoking, alcohol consumption), vital signs on admission (Glasgow Coma Scale [GCS] score, National Institute of Health Stroke Scale (NIHSS), systolic and diastolic BP, mean arterial pressure/MAP [defined as $(2 \times \text{diastolic BP} + \text{systolic BP})/3$], pulse pressure [defined as systolic BP minus diastolic BP], pulse rate, and axillary temperature), presence of bilateral extensor plantar reflexes, aspects related to ICH (location, presumed etiology, ICH volume [measured using ABC/2 method], presence of IVH, hydrocephalus, subarachnoid extension, and mass effect [defined as midline shift>5 mm and/or any identifiable brain herniation]), whether or not any invasive surgical procedures were done (clot evacuation, EVD or VP shunt placement]), as well as relevant laboratory test results (complete blood count, CRP, PT, APTT, serum glucose, BUN, serum creatinine, serum sodium and potassium). 30-day clinical outcome was measured using modified Rankin score (mRS) with a score of 6, 3-5, and 2 being dead, having a significant disability, and good outcome, respectively.

2.3. Statistical analysis

Data comparison was divided into two steps. First step was to compare the mortality and survivor data, regardless of their disability status for the purpose of obtaining mortality risk. Second step was to compare only those who were alive with minimal and significant disability in order to obtain 30-day good outcome percentages. Baseline categorical and interval data were presented as absolute (%) and mean \pm SD, respectively, and for data with many outliers, median with interquartile range (IQR) was used instead. Subjects' baseline characteristics were analyzed with Pearson's χ^2 for categorical data. Normally distributed interval data was tested with one-way ANOVA accompanied with Levene and Brown-Forsythe for equal variance assumption test, preceding post hoc (Games-Howell) test, whereas abnormally distributed data underwent Kruskal-Wallis test. All variables were screened for significant bivariate relationships and those with significant results were subsequently tested using multivariate logistic regression analyses with stepwise elimination of variables not contributing to the model (P > 0.10). The mICH score comprised of replacing GCS with NIHSS using identical cut-off point and weighted score to those of the oICH score version, i.e. NIHSS of 0-10 (0 point), 11-20 (1 point), 21-40 (2 points), replacing age with > 55 years old (1 point), addition of respiratory failure and mass effect (1 point each if present), with the rest of it being the same with the oICH score (ICH volume $> 30 \text{ cm}^3$, infratentorial origin, and the presence of IVH equals 1 point each). Optimal cut-off points for both mICH and oICH score against 30-day mortality and good outcome were derived from receiver operator curve (ROC). The resulting mICH and oICH score were subsequently tested for its diagnostic performance parameters, comprising sensitivity, specificity, positive and negative predictive value, and the resulting Youden index (YI) thereafter. All statistical analyses were performed using SPSS version 20.0 (IBM, San Fransisco) and P < 0.05 was considered statistically significant.

3. Results

There were 338 patients who presented to our center within September 01 2018 to July 31 2020, 311 of whom complete medical records were available, thus eligible to be included in the study. A complete information regarding patient's baseline characteristics can be seen in Table 1. The overall rate of mortality, significant disability, and good outcome within 30 days were 39.9%, 20.3%, and 39.9%, respectively. There were several parameters with statistically significant difference between groups, comprising age (those with fatal outcome tended to be significantly older by almost a decade when compared with the rest of the groups), comorbidities (renal function impairment, respiratory failure, and metabolic acidosis), vital signs (GCS and NIHSS, pulse pressure and rate, and axillary temperature), and bilateral plantar extensor reflexes. Interestingly, all aspects related to ICH including its location, volume, presumed etiology, the presence of IVH, subarachnoid extension, hydrocephalus, mass effect, and its related surgical interventions (clot evacuation and EVD) demonstrated significant differences between groups.

Significantly different variables of 30-day mortality and good outcome obtained from baseline characteristics were, in turn, analyzed in bivariate models (Table 2). There were multiple significant parameters in the bivariate models, particularly those determining the 30-day mortality outcome. We used 55 years old as a cut-off point for age, since according to ROC, we found that the age range of 55.5–56.5 years old yielded the best compromise in terms of sensitivity and specificity (i. e. 63.3% and 54%, respectively), as opposed to the low sensitivity by using a cut-off of 80 years old (sensitivity 1.6%; specificity 98.4%).

Those significant variables derived from bivariate analyses subsequently underwent multivariate logistic regression tests and the results were displayed in Table 3. We obtained an independent association of GCS, NIHSS, and the presence of respiratory failure at admission with increased mortality risk within 30 days. Similarly, high NIHSS remained consistently significant as an independent variable to be associated with lower and increased probability of good outcome and, significant disability, respectively, within 30 days. Another significant variable in

I.PutuE. Widyadharma et al.

Table 1

Univariate analyses of baseline characteristics of 311 patients in the study*.

DensembleJosh Sample is a start of the start	Parameter	Fatal outcome (30-day mRS 6) [%] $n = 124$	Significant disability (30-day mRS 3–5) [%] $n = 63$	Good outcome (30-day mRS \leq 2) [%] n = 124	Р
ApyApyApyApyApyApyApyApApFunde, erII	Demographics				
memb combinition4165.02007.04163.00.41Board contribution3165.0804.01016.00.44Board and finition216.0.0810.2.71016.00.45Board and finition216.0.0810.2.7814.0.00.23Board and finition216.0.0815.5.0814.0.00.23Board and finition216.0.0816.0.00.230.23Board and finition216.0.0816.0.00.230.23Board and finition216.0.07.790.40.0.00.20Board and finition216.0.010.20.0.00.20.0.00.20.0.0Board and finition210.2.0.010.20.0.00.20.0.00.20.0.0Board and finition20.2.0.010.2.0.0.00.20.0.00.20.0.0Board and finition20.2.0.010.2.0.0.00.20.0.00.20.0.0Board and finition20.2.0.010.2.0.0.00.20.0.00.20.0.0Board and finition20.2.0.010.2.0.0.00.20.0.00.20.0.0Board and finition20.2.0.0.010.2.0.0.00.20.0.00.20.0.0Board and finition20.2.0.0.010.2.0.0.00.20.0.00.20.0.0Board and finition20.2.0.0.010.2.0.0.00.20.0.00.20.0.0Board and finition20.2.0.0.010.2.0.0.00.20.0.00.20.0.0Board and finition20.2.0.0.0.010.2.0.0.00.20.0.00.20.0.0Board and finition20.2.0.0.0.010.2.0.0.00.20.0.00.20.0.	Age, y	60.73 ± 12.87	$\textbf{57.57} \pm \textbf{13.34}$	52.29 ± 13.34	0.211
Constraints: Hypercension of series and series is 55 P(8.1) is 55 P(7.2) is 0.1 (1.2) is 0.2 (1.2) (Female, sex	44 (35.5)	25 (39.7)	54 (43.5)	0.43
inspectamina97.0%50.8%1.197.0%197.0%10.0%10.0%1Department21.1%3.114.1%2.110.0%10.0%10.0%1Department21.0%110.0%10.0%10.0%1Department21.0%110.0%10.0%10.0%2Read Auclos insparament21.0%110.0%10.0%10.0%2Bead Auclos insparament21.0%18.1278.6530.0%2Bead Auclos insparament21.0%15.7.96.0%10.0001Auclos insparament21.0%113.200.021.0%10.0001Sendering40.2%113.200.020.1%50.0001Sendering10.4%213.200.020.1%50.0001Sendering7.76 + 3.179.8% + 2.5413.5% + 2.540.001Sendering hum16.4%2 + 2.5413.5%1 + 2.5%0.0010.001Sendering hum16.4%2 + 2.5%13.5%1 + 2.5%0.0010.001Sendering hum16.4%2 + 2.5%10.1%4 + 2.5%0.0010.001Sendering hum16.4%2 + 2.5%10.1%4 + 2.5%0.0010.001Sendering hum17.6%2 + 1.5%0.051 + 1.5%0.0010.001Sendering hum10.6%2 + 2.5%10.5%2 + 1.5%0.0010.001Sendering hum10.6%2 + 2.5%10.5%2 + 1.5%0.0010.001Sendering hum10.6%2 + 2.5%10.5%2 + 1.5%0.001Sendering hum10.7%2 + 2.5%10.5%2 + 1.5%0.001Sendering hum10.6%2 + 2.5%10.5%2 + 1.5% <td>Comorbidities</td> <td></td> <td></td> <td></td> <td></td>	Comorbidities				
Dables Date ending inferrior Domain certain inferrior Domain certain inferrior 	Hypertension	95 (76.6)	53 (84.1)	87 (70.2)	0.104
Choole crebal infaction $26 (2a)$ $10 (3a)$ $20 (161)$ 0.06 Ippertance infaction infractor $24 (2a)$ $35 (2a)$ $36 (2a)$ $20 (161)$ 0.027 Repletator function infractor $11 (16)$ $11 (17)$ $11 (2a)$ $10 (2a)$ 0.027 Repletator function infractor $51 (16a)$ $11 (17)$ $10 (2a)$ 0.027 0.027 Repletator function infractor $20 (18a)$ $57 (7a)$ $64 (0a)$ 0.027 Repletator function infractor $20 (18a)$ $10 (2a)$ $10 (2a)$ 0.027 Repletator function infractor $20 (18a)$ $10 (2a)$ $10 (2a)$ 0.027 Repletator function infractor $20 (18a)$ $10 (2a)$ $21 (18a)$ 0.027 Repletator function infractor $20 (18a)$ $20 (18a)$ 0.027 0.027 Repletator function infractor $20 (18a)$ $20 (18a)$ 0.027 0.027 Repletator function infractor $20 (18a)$ 0.027 0.027 0.027 Repletator function infractor $77 (18a) (16a)$ $11 (16a) $	Diabetes mellitus	23 (18.5)	8 (12.7)	10 (8.1)	0.051
inpertensive hort dense inpertensive hort dense inpertensive hort dense is (2,0)25 (5,0)16 (4,0)0,237 (1,0)0,275 (1,0)0,275 (1,0)0,275 (1,0)0,275 (1,0)0,275 (1,0)0,001Reginancy falme beginancy falme commension (1,0)20 (8,5)5 (4,0)10,0)10,0)20 (4,0)0,001Meable ranker beginancy falme (1,0)20 (8,5)10 (2,0)10 (2,0)10 (2,0)0,001Meable ranker (1,0)20 (4,0)10 (2,0)10 (2,0)0,0010,001Meable ranker (1,0)20 (4,0)10 (4,0)10 (4,0)0,0010,001Ministon20 (4,0)10 (4,0)10 (4,0)0,0010,0010,001Ministon10 (4,0)10 (4,0)10 (4,0)0,0010,0010,0010,001Ministon10 (4,0)10 (4,0)10 (4,0)0,0030,0010,0010,0010,001Ministon10 (2,0)10 (2,0)10 (2,0)10 (2,0)0,0010,0010,0010,001Ministon transporten (1,0)10 (2,0)10 (2,0)10 (2,0)0,0010,0010,0010,0010,001Ministon transporten (1,0)10 (2,0)10 (2,0)10 (2,0)0,0010,	Chronic cerebral infarction	25 (20.2)	19 (30.2)	20 (16.1)	0.08
Atticle Bullation Residuation Residuation impairment Residuation impairment Residuation Residuation Set 16.221.1.6.21.0.6.20.2.213 Residuation Set 0.5.7.91.0.6.30.0.213 Residuation Residuation ResiduationSet all Set 1.5.7.92.0.16.5.0.0.21 Residuation Residuation2.0.16.5.0.0.21 Residuation Residuation2.0.16.5.0.0.21 Residuation Residuation2.0.16.5.0.0.21 Residuation Residuation2.0.16.5.0.0.21 Residuation Residuation2.0.16.5.0.0.21 Residuation Residuation2.0.16.5.0.0.21 Residuation2.0.16.5.0.0.21 Residuation Residuation2.0.16.5.0.0.21 Residuation Residuation2.0.16.5.0.0.21 Residuation2.0.16.5.0.0.21 Residuation Residuation2.0.21 Residuation Residuation Residuation Residuation2.0.21 Residuation Resid	Hypertensive heart disease	62 (50)	35 (55.6)	54 (43.5)	0.275
Rand methods inpolations 21 (0.59) 8 (127) 8 (65) 0.001 Metabolic acidosis 23 (18.5) 5 (7.3) 2 (13.5) 0.001 Senking 30 (04.2) 13 (20.5) 2 (18.5) 0.001 Senking 4 (3.2) 13 (20.5) 13 (20.5) 0.001 Senking 14 (4.5) 33 (4.7) 14 (4.6) 2 (0.01) 0.001 Senking 17 (20.5) 17 (20.4) 18 (20.7) 0.001 0.001 Senking 9 (3.3) 10 (10.5) 11 (4.6) 2 (10.7) 0.001 Delatic BP, minitg 9 (2.3) 8 (2.7) 8 (3.7) 0.001 0.001 Delatic BP, minitg 9 (2.3) 10 (2.5) 11 (2.5) 0.001 0.001 Anisinis memperature, "C 8 (3.7) 10 (1.5) 0.001	Atrial fibrillation	5 (4.0)	1 (1.6)	1 (0.8)	0.213
Replanding Sol (4.2) S(7.9) S(7.9) S(7.9) S(7.0) S(0.0) Metabolic acidonis 20 (8.5) S(7.9) S(4.0) S(0.0) S(0.0) Metabolic acidonis 30 (24.2) 13 (20.0) 13 (20.0) 10.83 0.098 Alcohol comunption 7.76 + 3.17 9.48 + 2.54 1.25 + 1.84 0.001 Vill and metrofoldi sigs 7.76 + 3.17 9.48 + 2.54 1.53.9 + 2.07 S(0.0) Vill and metrofoldi sigs 1.76.7 + 3.03 10.14 + 2.03 1.53.9 + 2.07 0.83 Dissole BP, multip 1.43.5 - 3.03.4 10.14 + 2.03 1.53.9 + 2.07 0.83 Palse rate, igm 1.78.3 + 1.80 1.55.9 + 2.07 0.83 0.001 Admission temperature C 9.88 + 1.912 0.53.9 + 2.07 0.001 Admission temperature C 9.87 + 2.09 3.53 + 0.52 0.001 0.001 Labare 20.72,5 11.17,5 11.01,5 0.001 0.001 Labare 20.72,6 7.55,7 4.51,6 0.001 0.001	Renal function impairment	21 (16.9)	8 (12.7)	8 (6.5)	0.032*
Member acidosis $23 (18.5)$ 57.9 54.00 0.001 Smeking acidot communitor interest $33 (24.7)$ $13 (20.6)$ $21 (0.8)$ 0.53 Smeking acidot communitor interest 7.6 ± 3.17 9.48 ± 2.54 1.325 ± 1.84 0.001 Smoking CS core on admission 25.90 ± 6.65 1.619 ± 4.83 1.64 ± 2.03 1.53 ± 1.54 0.001 Smoking humits public by humits public by humits public by humits public by humits 0.737 ± 2.284 0.757 ± 1.859 1.602 ± 1.252 0.0021 Admission temperature, "C millassion temperature, "C	Respiratory failure	56 (45.2)	5 (7.9)	9 (7.3)	< 0.001 *
sensing Vial and neurological signs10(23,2)12(26,0)10(26,0)10(26,0)CS core and and neurological signs7.04 1.379.48 - 2.541.25 1.1444.001CS core and and neurological signs5.30 + 0.651.61 + 2.5.037.5 + 3.074.001NHSS on admission5.30 + 0.651.61 + 2.5.035.5 + 3.052.5 + 3.072.5 + 3.07Synshel EP, multip hashold EP, multip hashold EP, multip 	Metabolic acidosis	23 (18.5)	5 (7.9)	5 (4.0)	< 0.001 *
Actor Actor (Valiand neurophonistigs) (Valiand neurophonistigs) $4(32)^{-1}$ 10.85^{-1} 10.85^{-1} 10.98^{-1} GCS score on admission 7.5 ± 3.17 9.48 ± 2.54 13.25 ± 1.84 0.001 NHESO nadmission $5.30 \pm 2.53 \pm 4.65$ 1.51 ± 4.2503 $5.50 \pm 2.532 \pm 7.20$ 0.202 Syndie BP malig 9.493 ± 1.360 9.572 ± 1.099 9.532 ± 7.20 0.851 Palse methods 7.72 ± 2.051 1.774 ± 1.8101 11.469 ± 2.1452 0.003 Admission temperature, "C 9.592 ± 2.052 1.774 ± 1.8101 11.469 ± 2.1452 0.003^{-1} Palse methods 9.32 ± 1.912 8.59 ± 4.030 4.013 ± 2.052 0.003^{-1} Admission temperature, "C 9.592 ± 1.912 8.59 ± 2.052 8.54 ± 1.87 0.001^{-1} Admission temperature, "C $9.725.200$ 3.653 ± 0.52 $2.077.7$ 0.001^{-1} Admission temperature, "C $9.725.200$ 3.653 ± 0.52 $2.077.7$ 0.001^{-1} Admission temperature, "C $9.072.50$ $1.0(75.7)$ $4.0(51.5)$ 0.007^{-1} Thalamic $9.072.50$ $1.0(8.5)$ $1.0(8.5)$ 0.007^{-1} Palse methods $9.72.50$ $0.072.50$ $1.0(8.5)$ 0.077^{-1} Thalamic $9.072.50$ $6.0(55.7)$ $1.0(8.15)$ 0.007^{-1} Presund etables $0.072.50^{-1}$ $1.0(6.1)^{-1}$ $0.012.50^{-1}$ 0.001^{-1} Cerebellar $9.072.50^{-1}$ $1.0(8.1)^{-1}$ $0.0(1.5)^{-1}$ $0.024.20^{-1}$ 0.001^{-1}	Smoking	30 (24.2)	13 (20.6)	23 (18.5)	0.550
Vini and neurological signs (CS store on advision) 7.6 - 3.17 9.44 - 2.54 1.25 - 1.43 0.001 NHSS on admission 25.0 ± 6.65 16.19 ± 4.83 7.6 ± 3.37 0.001 Syncic BP, mmHg Database 16.47.5 ± 3.34 16.1.6 ± 2.5.03 15.5.9 ± 3.2.69 0.221 MAP, mmHg 11.7.8 ± 3.1.6 ± 3.5.91 11.6.9 ± 3.5.91 11.6.9 ± 3.1.7.91 0.450 MAP, mmHg 11.7.8 ± 3.1.6 ± 3.5.91 11.7.8 ± 3.91 11.6.9 ± 3.1.7.91 0.450 Mappe rate, Pin, mmHg 30.82 ± 19.12 65.89 ± 14.03 84.11 ± 12.71 0.459 Mappe rate, Pin, mmHg 30.82 ± 19.12 65.89 ± 14.03 84.11 ± 12.71 0.459 Mappe rate, Pin, mmHg 30.82 ± 19.12 55.89 ± 14.03 84.11 ± 12.71 0.600 Mappe rate, Pin, mmHg 30.82 ± 19.12 55.89 ± 14.03 84.11 ± 12.71 0.600 Mappe rate, Pin, mmHg 30.82 ± 19.12 55.89 ± 14.03 84.11 ± 12.71 0.600 Mappe rate, Pin, Pin, Pin, Pin, Pin, Pin, Pin, Pin	Alcohol consumption	4 (3.2)	4 (6.3)	1 (0.8)	0.098
CCS core admission 7.76 ± 3.17 9.48 ± 2.54 12.25 ± 1.84 < 0.01 NHSS on admission 25.01 ± 6.65 16.19 ± 4.83 7.6 ± 3.67 < 0.01 Syncis By maning 45.33 ± 1.650 16.14 ± 2.503 55.35 ± 1.650 16.35 ± 1.260 0.282 Datache By, maning 45.33 ± 1.650 16.14 ± 2.503 56.35 ± 1.650 16.03 ± 0.052 0.007 Datache BY, maning 70.37 ± 2.284 16.77 ± 1.859 16.03 ± 0.052 0.007 Datache BY, maning 70.37 ± 2.06 36.51 ± 0.52 36.524 ± 1.87 0.007 Ballarend Lettemore plantar reflexes 37 (28.27) 17 (28.77) 21 (17.7) 21 (16.97) 0.007 Careballar 97 (28.27) 12 (17.90) 21 (16.97) 20 (17.7) 0.007 Synchreitorish (16.17) 97 (7.8) 0 (00.8 10 (01.5) 0.007 Presumed citalogy 10 (16.15) 0.007 21 (16.7) 0.007 Presumed citalogy 10 (16.19) 20 (26.7) 10 (01.61.5) 0.007 Presumed citalogy 97 (28.1) 14 (28.0) 10 (01.61.5) 0.007 Presumed citalogy 10 (Vital and neurological signs	. ,			
NHSS on admission 25.30 ± 6.65 16.19 ± 4.83 7.65 ± 3.67 20.01 Systolic BP, mmHg Dasstolic BP, mmHg Palse preserve, mmHg 146.75 ± 33.34 94.38 ± 1.680 161.46 ± 25.03 97.37 ± 16.99 142.84 ± 17.20 94.38 ± 1.720 0.351 94.38 ± 1.720 0.351 	GCS score on admission	7.76 ± 3.17	9.48 ± 2.54	13.25 ± 1.84	< 0.001
Nitls on admission 25.9 ± 0.66 16.19 ± 4.83 7.65 ± 3.67 0.001 Systolic BP, mmHg 146.75 ± 33.34 101.46 ± 20.03 15.539 ± 32.09 0.822 Distric BP, mmHg 17.83 ± 10.05 17.64 ± 16.01 14.69 ± 21.45 0.851 MAP, mmHg 7.02 ± 22.84 65.73 ± 18.59 61.01 ± 0.952 0.003 Palse resume, mmHg 7.97 ± 20.94 65.73 ± 18.59 61.01 ± 0.952 0.003 Addision temporture, C 93.82 ± 19.12 85.89 ± 14.03 84.11 ± 12.71 0.001 Addision temporture, C 93.82 ± 19.12 85.89 ± 14.03 84.11 ± 21.71 0.001 Addision temporture, C 93.82 ± 19.12 $37.058.77$ 6.052 0.003 Addision temporture, C $32.058.11 \pm 0.02$ $21.(16.9)$ 0.001 Icher a $32.025.80$ $37.058.77$ $4.61.01$ 0.001 Lobar $32.025.80$ $37.058.77$ $4.61.01$ 0.001 Lobar $32.029.90$ $21.(16.9)$ 0.001 Pontine $0.72.63.80$ $3.64.87$ $0.077.80.80$ $0.077.80.80$ Signationtrail (CH $90.79.80.90$ $0.02.80.70.90.90.90.90.90.90.90.90.90.90.90.90.90$					*
Synole BP, multip144.75 ± 33.34161.46 ± 25.0315.39 ± 32.690.282Disole BP, multip14.58 ± 1.68017.743 ± 1.0914.69 ± 7.1.200.851MAP, multip70.75 ± 22.8465.73 ± 18.5961.03 ± 20.520.003Pake rates, pan36.79 ± 2.0911.75.5113.10.500.699Single BP, multip27.95.9112.10.520.0030.699Interaction temperature, "C67.91 ± 2.0911.10.7513.10.520.003Dialecati extension temperature, "C7.028.97.07.882.07.110.010Lobar7.028.97.07.982.07.110.0100.016Lobar20.25.811.10.752.07.110.017Lobar10.12.93.(4.8)9.7.330.017Personde tradition temperature, "C9.07.25.03.(4.8)9.7.330.017Personde tradition temperature, "C0.07.25.03.(4.8)9.7.330.017Personde tradition temperature, "C0.07.25.03.02.12.03.02.12.01.01.05.00.012.0Suparatorial (C19.07.25.03.6.85.71.16.15.03.02.40.012.00.012.0Personde tradition temperature, "C0.012.01.01.05.00.012.00.012.00.012.00.012.0Unition temperature, "C0.012.01.00.05.00.02.10.012.00.012.00.012.0Suparatorial (C19.07.25.01.00.02.01.01.05.00.00.10.01.0Unition temperatorial (C19.07.11.00.01.00.01.0 <t< td=""><td>NIHSS on admission</td><td>25.30 ± 6.65</td><td>16.19 ± 4.83</td><td>$\textbf{7.65} \pm \textbf{3.67}$</td><td>< 0.001 *</td></t<>	NIHSS on admission	25.30 ± 6.65	16.19 ± 4.83	$\textbf{7.65} \pm \textbf{3.67}$	< 0.001 *
phase is primaring marge marge MAP, multip 	Systolic BP, mmHg	164.75 ± 33.34	161.46 ± 25.03	155.39 ± 32.69	0.282
NAP, make or Pube pressure, momble pube pressure, momble public pube public p	Diastolic BP, mmHg	94.38 ± 16.80	95.73 ± 16.99	94.35 ± 17.20	0.851
Puble preserve Puble rate, bpm 70.37 ± 22.84 93.82 ± 19.12 65.73 ± 18.59 61.03 ± 20.52 81.403 0.003 ± 0.012 Puble rate, bpm 93.82 ± 19.12 85.89 ± 14.03 86.89 ± 14.03 84.11 ± 12.71 0.003 Bilareral extensor plantar reflexes $49(39.5)$ $37(58.7)$ $11(17.5)$ $46(15.6)$ $21(16.9)$ 0.001^{-1} Bilareral extensor plantar reflexes $37(28.8)$ $32(25.8)$ $37(58.7)$ $11(17.5)$ $46(15.6)$ $21(16.9)$ 0.001^{-1} $21(16.9)$ Lobar $37(28.8)$ $32(25.8)$ $11(17.5)$ $21(16.9)$ $97.3)$ 0.007^{-1} Postine $16(12.9)$ $97.3)$ $3(4.8)$ $97.3)$ 97.3 0.007^{-1} Suparatorial ICH $99(78.8)$ $90(72.6)$ $11(6.8)$ $107(66.3)$ 0.007^{-1} Presund etiolog 0072.6 $116.16)$ $101(81.5)$ $101(81.5)$ 0.013^{-1} $101(81.5)$ Presund etiolog $00(72.6)$ $116.16)$ $0.012.60$ 0.017^{-1} UCH rotine $00(5.4)$ $0.002.60$ $0.012.60$ Subarchnoid extension $86(5.1)$ $10.802.70$ $16.4(21.65)$ <0.001 ICH rotine $0.0(5.4)$ $0.0(26.0)$ $16.4(21.65)$ <0.001 Subarchnoid extension $46(38.7)$ $10.6(2.3)$ $10.05.1$ <0.001 ICH rotine, mol 12.89 ± 3.56 13.37 ± 1.93 13.46 ± 2.96 <0.001 Subarchnoid extension $14.81.23.1$ $13.80(8.53)$ 13.46 ± 2.96 $0.377ICH rotine, mol12.89 \pm 3.5613.37 \pm 1.9334.64$	MAP, mmHg	117.83 ± 21.05	117.64 ± 18.01	114.69 ± 21.45	0.436
Pulse rate, bpm93.82 ± 19.1285.89 ± 14.0384.11 ± 1271 $<$ 0.001Admission temperature, °C Bilanceri detensor plantar reflexes36.79 ± 2.09 49(9.5)36.53 ± 0.52 11 (17.5)36.24 ± 1.87 13 (10.5)0.059 4.001CH location77(29.8)77(58.7)24 (75.1) 21 (17.5)22 (77.1) 21 (16.9)0.001 12 (16.9)Darbar30 (24.2)12 (19.0)21 (16.9) 97.3)0 (008 (6.5) 3 (24.8)0.007 17 (16.8)Presumed etiology97(73)0 (008 (6.5) 3 (24.4)0.007 17 (16.8)0.007 17 (16.8)0.007 17 (16.8)Presumed etiology97(73)0 (008 (6.5) 3 (24.4)0.007 17 (16.8)0.007 17 (12.7)0.001 18 (14.5)Presumed etiology97 (72.0)54 (85.7)101 (81.5)0.007 17 (12.7)0.001 18 (14.5)Cerebellar9 (72.0)54 (85.7)101 (81.5)0.012 3 (24.4)0.013Amyloid angiopathy8 (6.5)10.613 (2.4)0.001Vascular matformation finel. AVM and 16 (12.0)10 (2.1)18 (14.5)0.001CH orothis10 (81.7)10 (2.1)13 (10.5)<0.001	Pulse pressure, mmHg	70.37 ± 22.84	65.73 ± 18.59	61.03 ± 20.52	0.003*
AnswigArrowArrowArrowArrowArrowArrowArrowAdmission tramperature, C Bilaeral extensor plantar reflexes 479 ± 2.09 $9(39.5)$ 315 ± 0.52 $11(17.5)$ 32.24 ± 1.87 $13(10.5)$ 0.059 < 0.001 ICH location Basal ganglia $7(29.8)$ $22(25.8)$ $37(58.7)$ $11(17.5)$ $64(61.6)$ $22(17.7)$ 116.80 0.001 $22(17.7)$ Lobar Lobar $37(29.8)$ $22(25.8)$ $11(17.5)$ $22(17.7)$ 216.80 0.001 $22(17.7)$ Pontine Derstande (1602) $16(12.9)$ 216.80 $3(4.8)$ $9(7.3)$ $9(7.3)$ 0.007 Supratnorial ICH Presunde (1602) $97(7.8)$ 11.60 $10(18.15)$ 0.007 Presunde (1603) Cerebellar $90(72.6)$ $16(12.9)$ $54(85.7)$ 11.60 $10(18.15)$ $12(2.4)$ Vascular nalformation (Incl. AVM and $26(5.5)$ ICH profiles ICH volume, mL $36.5(47.8)$ $10(8.1)$ 0.002 $22(16.9)$ ICH volume, mL $36.5(47.8)$ $10(8.1)$ $30.0128.01$ 22.40 $16.4(21.65)$ 22.40 Vascular nalformation (Incl. AVM and $48(38.7)$ $12(2.2)$ $10(2.2)$ $13(10.5)$ $10(2.4)$ ICH volume, mL $36.5(47.8)$ $10(2.5)$ $30.0128.01$ $10(2.2)$ $13(10.5)$ $10(2.4)$ IVH $80(65.4)$ $10(2.2)$ $12(4.2)$ $10(2.2)$ $13(10.5)$ $10(2.4)$ 20.001 IVH $80(65.4)$ $10(2.5)$ $12(6.6)$ 20.001 IVH $80(65.4)$ $10(2.5)$ $12(6.6)$ 20.001 IVH $80(65.4)$ $10(2.5)$ $12(6.6)$ <td>Pulse rate, bpm</td> <td>93.82 ± 19.12</td> <td>85.89 ± 14.03</td> <td>84.11 ± 12.71</td> <td>< 0.001</td>	Pulse rate, bpm	93.82 ± 19.12	85.89 ± 14.03	84.11 ± 12.71	< 0.001
Admission temperature, °C Billaceral extensor plantar reflexes $36, 29, 4, 20, 99$ $30, 50.$ $36, 53, 4, 0.52$ $11, (17.5)$ $32, 62, 41, 18, 72$ $31, (10.5)$ 0.059 $13, (10.5)$ 0.001 Del Hoerino Laborator 20, 20, 20, 20, 20, 20, 20, 20, 20, 20,		5010E ± 1511E			*
Bilderal extensor plantar reflexes49 (39.5)11 (17.5)13 (10.5)< 0.001ICH location $77 (29.8)$ $37 (58.7)$ 64 (61.6)0.001Lobar $37 (29.8)$ $37 (58.7)$ 22 (17.7)0.001Lobar $37 (29.8)$ $37 (19.0)$ 22 (17.7)0.001Lobar $37 (29.8)$ $37 (19.0)$ 21 (16.9)0.001Pointine 97.3 0 (008 (6.5)0.007Presumed etiology 97.3 0 (008 (6.5)0.007Presumed etiology 97.3 0 (008 (6.5)0.007Presumed etiology 97.3 7 (16.9)0.0130.007Presumed etiology 97.3 7 (12.7)118 (14.5)0.013Aradizal andiprotation (incl. AVM and16 (12.9)7 (12.7)118 (14.5)0.013Cerebralian 97.3 0 (002 (1.6) $ -$ UCH outure, nul. $10 (8.1)$ $0 (00$ 2 (1.6) $ -$ UCH outure, nul. $36.5 (47.8)$ $30.0 (28.0)$ $16.4 (21.65)$ < 0.001 UCH outure, nul. $46 (38.7)$ $14 (22.2)$ $13 (10.5)$ < 0.001 Subarachnoid extension $46 (38.7)$ $10 (3.2)$ $3 (10.5)$ < 0.001 Hydrocyphalus $64 (15.6)$ 13.37 ± 1.93 13.64 ± 2.96 2.37 Mite cell count, $10^7 L^1$ 12.83 ± 3.56 13.37 ± 1.93 13.64 ± 2.96 2.37 Pataret, $10^7 L^1$ 12.83 ± 3.56 13.37 ± 1.93 $2.64 (10.72)$ < 0.002 Hydrocypha	Admission temperature °C	36.79 ± 2.09	36.53 ± 0.52	36.24 ± 1.87	0.059
Label and plane interaction pla	Bilateral extensor plantar reflexes	49 (39.5)	11 (17.5)	13 (10.5)	< 0.001
ICH location Jassi ganglan 37 (29.8) 37 (68.7) 4 (61.6) 0.001 Lobar 32 (25.8) 11 (17.5) 22 (17.7) 21 (16.9) Panaline 32 (25.8) 12 (19.0) 21 (16.9) 21 (16.9) Pontine 16 (12.9) 3 (4.8) 9 (73.1) 0.007 Septemborial ICH 99 (79.8) 61 (96.8) 107 (96.3) 0.007 Presumed etiology 70 (25.0) 14 (65.7) 10 (18.1) 0.013 * Anayloid anglopathy 8 (65.3) 11 (16.9) 3 (24.9) 0.013 * Vascular nationation (incl. AVM and 16 (12.9) 70 (12.7) 116 (14.5) - Uscular nationation (incl. AVM and 16 (2.9) 20 (28.0) 16 (21.651 <	Diateral entensor plantal reficies	15 (6516)	11 (1)(0)	10 (1010)	*
Basel grapita Lobar37 (29.8)37 (58.7)64 (51.6)0.001Lobar32 (25.8)11 (17.5)22 (17.7)12 (19.0)21 (10.5)Thalanic30 (24.2)12 (19.0)8 (6.5)10.001Cerebellar9 (7.3)0 (0)8 (6.5)0.007Suprateorial ICH99 (79.8)61 (98.8)10 (8.1.5)0.007Parsumed tiology11 (16.1)3 (2.4.1)0.018.1)0.013.1Amyloid anglopathy46 (6.5)11 (16.1)3 (2.4.1)0.013.1Vascular nalformation (nct. AVM and cerebral and company)64 (6.5)11 (16.1)3 (2.4.1)It values10 (8.1)0.012 (2.7.1)118 (14.5)Cerebral and company7 (2.6.1)10 (12.9)2 (4.0.1)11 (16.1)It values3 (5.4.7.8)10 (2.9.1)10 (2.9.1)4 (0.0.1)Vascular nalformation (nct. AVM and cerebral and company)10 (8.1)20 (12.9)10 (16.1)It values, main3 (5.4.7.8)10 (2.9.1)10 (2.9.1)4 (0.0.1)Vascular nalformation (nct. AVM and serefret10 (8.1)10 (2.9.1)10 (2.9.1)4 (0.0.1)It values, main3 (5.4.7.8)10 (2.9.1)10 (2.9.1)4 (0.0.1)4 (0.0.1)Associar carefred and careformany10 (6.9.1)10 (0.0.2)10 (0.0.1)4 (0.0.1)It values, main3 (5.4.7.8)10 (2.9.1)10 (2.9.1)4 (0.0.1)It values, main3 (5.4.7.8)10 (2.9.1)10 (2.9.1)4 (0.0.1)It values, main3	ICH location				
note32 (25.6)11 (7.5)22 (7.7) 10.12 Thalanic32 (25.6)12 (19.0)21 (16.9)Pontine16 (12.9)3 (4.8)9 (7.3)Cerebelar9 (7.3)0 (0)8 (6.5)Supratent/or II CH99 (79.8)61 (96.8)107 (86.3)0.007"Presumed etiology054 (85.7)101 (81.5)0.013"Amyloid angiopathy8 (6.5)11.6.63 (2.4)32 (2.4)Vascular malformation (incl. AVM and techel aneurysm)16 (12.9)78 (12.7)118 (14.5)Bedenig disthesis10 (81.5)0.0012 (1.6)CH youther, mL ¹ 36.5 [47.8]30.0 [28.0]16.4 (21.65]< 0.001	Basal ganglia	37 (29.8)	37 (58.7)	64 (51.6)	0.001*
Talamic30 (24.2)12 (19.0)21 (16.9)Pontine16 (12.9)3 (4.8)9 (7.3)Carebellar9 (7.3)0 (0)8 (6.5)Supartentorial ICH99 (79.8)6 (96.8)10 (81.5)Presumed etiology11 (1.6)3 (2.4)Chronic hypertension90 (72.6)54 (85.7)10 (81.5)Amylod angiopathy8 (6.5)11 (1.6)3 (2.4)Vascular malformation (incl. AVM and teerberla metrysm)16 (12.9)78 (12.7)118 (14.5)Electing diathesis10 (81.1)0 (0)2 (1.6)<0.001	Lobar	32 (25.8)	11 (17.5)	22 (17.7)	
number Cerebellar16 (12.9) 9 (7.3)3 (4.8) 0 (0) 8 (6.5)9 (7.3) 8 (6.5)Supratentorial ICH Presumed etiology Chronic hypertension90 (72.6)54 (85.7)107 (86.3)0.007Amyloid angiopathy Vascular mathemation (incl. AVM and cerebral aneurysm)16 (12.9)78 (12.7)118 (14.5)0.013Bedenig dishesis CICH poniles10 (8.1)0 (0)2 (1.6) (1.6) (1.6) (1.6) ICH poniles ICH poniles10 (8.1)0 (0)2 (1.6) < 0.001 < 0.001 IVH80 (65.4)20 (46.0)30 (24.2) < 0.001 Subarachnoid extension48 (38.7)14 (22.2)13 (10.5) < 0.001 Subarachnoid extension48 (38.7)13 (0.2)13 (10.5) < 0.001 Mass effect57 (46.0)26 (41.3)13 (10.5) < 0.001 Laboratory parameters White cell count, 10%/L15.58 [9.63]13.80 [8.53]13.46 ± 2.960.237Platelet, 10%/L24.35.5613.37 ± 1.9313.46 ± 2.960.23713.15Platelet, 10%/L14.95.10)25.25 [19.10]262.4(107.22]0.3170.315Protorobin time, s13.18 ± 1.66927.37 ± 1.03813.46 ± 2.960.237Platelet, 10%/L14.95.1.910.3360.902.1.930.902.1.930.902.1.93Portorobin time, s13.18 ± 1.6927.37 ± 1.0380.3160.73Serum gutoose, mg/dL14.81.3314.8 [8.6]12.5 [7.0]0.932Serum gutoose, mg/dL14.91.93 <td< td=""><td>Thalamic</td><td>30 (24.2)</td><td>12 (19.0)</td><td>21 (16.9)</td><td></td></td<>	Thalamic	30 (24.2)	12 (19.0)	21 (16.9)	
Cerebellar9 (7.3 $-$)0 (0)8 (6.5)Supratenorial ICH99 (79.8)61 (96.8)107 (86.3)0.007Presumed telology0 (72.6)54 (85.7)101 (81.5)0.13 $-$ Chronic hypertension90 (72.6)54 (85.7)101 (81.5)0.01 $-$ Amylod angiopathy8 (6.5)1 (1.6)3 (2.4) $-$ Vascular malformation (incl. AVM and cerebral aneurysm)16 (12.9)78 (12.7)118 (14.5) $-$ Bleeding diathesis10 (8.1)0 (0)2 (1.6) $ -$ ICH volume, mL36.5 [47.8]30.0 [28.0]16.4 [21.65] $ -$ ICH volume, mL80 (65.4)29 (46.0)30 (24.2) $ -$ Subarachnoid extension48 (38.7)14 (22.2)13 (10.5) $ -$ Mas effect57 (46.0)26 (41.3)13 (10.5) $ -$ Iaboratory parameters $ -$	Pontine	16 (12.9)	3 (4.8)	9 (7.3)	
Supratemotial ICH 90 (79.8) 61 (96.8) 107 (96.3) 0.007 Presumed etiology 007 (2.6) 54 (85.7) 101 (81.5) 0.013 Amyloid angiopathy 8 (6.5) 1 (1.6) 3 (2.4) 3 (2.4) Vascular malformation (incl. AVM and cerebral aneurysm) 16 (12.9) 78 (12.7) 118 (14.5) - Beleding dithesis 10 (8.1) 0 (0) 2 (1.6) - - ICH volume, mL 80 (55.4) 30.0 (28.0) 16.4 (21.65) < 0.001	Cerebellar	9 (7.3)	0 (0)	8 (6.5)	
Presumed etiology Internation Presumed etiology Internation Presumed etiology Chronic hypertension 90 (72.6) 54 (85.7) 101 (81.5) 0.013* Amyloid angiopathy 8 (6.5) 1 (1.6) 3 (2.4) 18 (1.4.5) cerebral neurysm) Electing diathesis 10 (8.1) 0 (0) 2 (1.6) ICH profiles 10 (8.1) 30.0 [28.0] 16.4 [21.65] < 0.001	Supratentorial ICH	99 (79.8)	61 (96.8)	107 (86.3)	0.007*
Chronic hypertension90 (72.6)54 (85.7)101 (81.5)0.013Amyloid angiopathy8 (6.5)1 (1.6)3 (2.4)3 (2.4)Vascular malformation (incl. AVM and cerebral aneurysm)16 (12.9)7 (12.7)118 (14.5)Bedering disthesis10 (8.1)0 (0)2 (1.6)ICH profiles3 (5.5 [47.8]30.0 [28.0]16.4 [21.65]< 0.001	Presumed etiology				
Amyloid angiopathy8 (6.5)1 (1.6)3 (2.4)1 (1.4)Vascular malformation (incl. AVM and cerebral neurysm)16 (12.9)78 (12.7)118 (14.5)Electing diathesis10 (8.1)0 (0)2 (1.6)ICH profiles36.5 [47.8]30.0 [28.0]16.4 [21.65]< 0.001	Chronic hypertension	90 (72.6)	54 (85.7)	101 (81.5)	0.013*
Vascular matromation (incl. AVM and correlation incl. AVM and correlation inclusion) 16 (12.9) 78 (12.7) 118 (14.5) Bedding distensis 10 (8.1) 0 (0) 2 (1.6)	Amyloid angiopathy	8 (6.5)	1 (1.6)	3 (2.4)	
cerebral aneurysm) 10 (a.1) 0 (0) 2 (1.6) Deding diathesis 10 (8.1) 0 (0) 2 (1.6) ICH yrollume, mL 36.5 [47.8] 30.0 [28.0] 16.4 [21.65] < 0.001	Vascular malformation (incl. AVM and	16 (12.9)	78 (12.7)	118 (14.5)	
Bleeding diathesis 10 (8.1) 0 (0) 2 (1.6) LCH profiles 36.5 [47.8] 30.0 [28.0] 16.4 [21.65] < 0.001	cerebral aneurysm)				
ICH profiles ICH profiles ICH profiles ICH profiles ICH volume, mL ¹ 36.5 [47.8] 30.0 [28.0] 16.4 [21.65] < 0.001	Bleeding diathesis	10 (8.1)	0 (0)	2 (1.6)	
ICH volume, mL $36.5 [47.8]$ $30.0 [28.0]$ $16.4 [21.65]$ < 0.001 IVH $80 (65.4)$ $29 (46.0)$ $30 (24.2)$ < 0.001 Subarachnoid extension $48 (38.7)$ $14 (22.2)$ $13 (10.5)$ < 0.001 Mass effect $57 (46.0)$ $26 (41.3)$ $13 (10.5)$ < 0.001 Hydrocephalus $64 (51.6)$ $19 (30.2)$ $13 (10.5)$ < 0.001 Laboratory parameters $64 (51.6)$ $19 (30.2)$ $13 (10.5)$ < 0.001 White cell count, $10^9/L^1$ 12.83 ± 3.56 13.37 ± 1.93 13.46 ± 2.96 0.237 Platelet, $10^9/L^1$ 12.83 ± 3.56 13.37 ± 1.93 13.46 ± 2.96 0.237 Platelet, $10^9/L^1$ $14.95 [1.5]$ $0.72 [5.52]$ $0.84 (3.30)$ 0.188 Protinombin time, s $14.05 [1.9]$ $0.72 [5.52]$ $0.84 (3.30)$ 0.337 Protinombin time, s $14.05 [1.9]$ $13.80 [1.6]$ $14.05 [1.5]$ 0.342 Activated partial thromboplastin time, s $14.05 [1.9]$ $13.97 \pm 1.47.55$ $12.5 [7.0]$ 0.332^{-1} Blood urea nitrogen, mg/dL $14.8 [13.3]$ $14.8 [8.6]$ $0.99 [0.45]$ $0.89 [0.54]$ 0.033^{-1} Serum creatinine, mg/dL $13.80 [0.97]$ $3.36 (0.871)$ $355 [0.60)$ 0.214 Urgical procedure $10.6 [1.08]$ $0.90 [0.45]$ $0.89 [0.54]$ 0.032^{-1} Serum creatinine, mg/dL $14.8 [10.3]$ $14.8 [8.6]$ $0.55 [0.60]$ 0.214 Urgical procedure $10.6 [1.08]$ $0.90 [0.45]$ $0.95 [0.61]$	ICH profiles				
IVH 80 (65.4) 29 (46.0) 30 (24.2) < 0.001 Subarachnoid extension 48 (38.7) 14 (22.2) 13 (10.5) < 0.001	ICH volume, mL [†]	36.5 [47.8]	30.0 [28.0]	16.4 [21.65]	< 0.001
Subarachnoid extension 48 (38.7) 14 (22.2) 13 (10.5) * Mass effect 57 (46.0) 26 (41.3) 13 (10.5) < 0.001	IVH	80 (65.4)	29 (46.0)	30 (24.2)	< 0.001
Subarachnoid extension48 (38.7)14 (22.2)13 (10.5)< 0.001Mass effect57 (46.0)26 (41.3)13 (10.5)< 0.001			14 (00.0)	10 (10 5)	*
Mass effect57 (46.0)26 (41.3)13 (10.5)< 0.001Hydrocephalus64 (51.6)19 (30.2)13 (10.5)< 0.001	Subarachnold extension	48 (38.7)	14 (22.2)	13 (10.5)	< 0.001 *
Hydrocephalus64 (51.6)19 (30.2)13 (10.5)< 0.001Laboratory parameters*White cell count, $10^9/L^1$ 15.58 [9.63]13.80 [8.53]11.86 [5.86]< 0.001	Mass effect	57 (46.0)	26 (41.3)	13 (10.5)	< 0.001 *
Laboratory parameters White cell count, $10^9/L^1$ 15.58 [9.63]13.80 [8.53]11.86 [5.86]< 0.001Hemoglobin, g/dL12.83 ± 3.5613.37 ± 1.9313.46 ± 2.960.237Platelet, $10^9/L$ 240.45 [125.10]265.7 [89.10]262.4 [107.22]0.317C-reactive protein1.49 [9.50]0.72 [6.52]0.84 [3.30]0.158Prothrombin time, s14.05 [1.9]13.80 [1.6]14.05 [1.5]0.144Activated partial thromboplastin time, s31.18 ± 16.6927.37 ± 10.1827.33 ± 8.090.302*Serum glucose, mg/dL16.67 ± 80.89139.71 ± 47.55129.51 ± 51.520.003*Blood urea nitrogen, mg/dL14.8 [13.3]14.8 [8.6]12.5 [7.0]0.003*Serum creatinine, mg/dL1.05 [1.08]0.90 [0.45]0.89 [0.54]0.013*Serum sodium, meq/L3.38 [0.97]3.67 [0.87]3.55 [0.60]0.214Surgical procedure27 (21.8)18 (28.6)8 (6.5)<	Hydrocephalus	64 (51.6)	19 (30.2)	13 (10.5)	< 0.001 *
White cell count, 10 $^{\circ}$ L15.88 [9.33]11.80 [8.33]11.86 [5.86]< 0.001Hemoglobin, g/dL12.83 ± 3.5613.37 ± 1.9313.46 ± 2.960.237Platelet, 10 9 /L240.45 [125.10]265.7 [89.10]262.4 [107.22]0.317C-reactive protein1.49 [9.50]0.72 [6.52]0.84 [3.30]0.158Prothrombin time, s14.05 [1.9]13.80 [1.6]14.05 [1.5]0.144Activated partial thromboplastin time, s31.18 ± 16.6927.37 ± 10.1827.33 ± 8.090.032*Serum glucose, mg/dL166.76 ± 80.89139.71 ± 47.55129.51 ± 51.52< 0.001	Laboratory parameters		10.00.50.501		0.001
Hemoglobin, g/dL 12.83 ± 3.56 13.37 ± 1.93 13.46 ± 2.96 0.237 Platelet, $10^9/L$ $240.45[125.10]$ $265.7[89.10]$ $262.4[107.22]$ 0.317 C-reactive protein $1.49 [9.50]$ $0.72 [6.52]$ $0.84 [3.30]$ 0.158 Prothrombin time, s $14.05 [1.9]$ $13.80 [1.6]$ $14.05 [1.5]$ 0.144 Activated partial thromboplastin time, s 31.18 ± 16.69 27.37 ± 10.18 27.33 ± 8.09 0.032^* Serum glucose, mg/dL 16.76 ± 80.89 139.71 ± 47.55 129.51 ± 51.52 <0.001 Blood urea nitrogen, mg/dL $14.8 [13.3]$ $14.8 [8.6]$ $12.5 [7.0]$ 0.003^* Serum creatinine, mg/dL $1.05 [1.08]$ $0.90 [0.45]$ $0.89 [0.54]$ 0.013^* Serum sodium, meq/L $3.38 [0.97]$ $3.67 [0.87]$ $3.55 [0.60]$ 0.214 Surgical procedure $27 (21.8)$ $18 (28.6)$ $8 (6.5)$ $<0.002^*$ Ventriculoperitoneal shunt $11 (8.9)$ $9 (14.3)$ $9 (7.3)$ 0.316	white cell count, 10 ⁻⁷ L ⁺	15.58 [9.63]	13.80 [8.53]	11.86 [5.86]	< 0.001 *
Platelet, 10 ⁹ /L 240.45[125.10] 265.7[89.10] 262.4[107.22] 0.317 C-reactive protein 1.49 [9.50] 0.72 [6.52] 0.84 [3.30] 0.158 Prothrombin time, s 14.05 [1.9] 13.80 [1.6] 14.05 [1.5] 0.144 Activated partial thromboplastin time, s 31.18 ± 16.69 27.37 ± 10.18 27.33 ± 8.09 0.32* Serum glucose, mg/dL 16.76 ± 80.89 139.71 ± 47.55 129.51 ± 51.52 0.003* Blood urea nitrogen, mg/dL 14.8 [13.3] 14.8 [8.6] 12.5 [7.0] 0.003* Serum creatinine, mg/dL 1.05 [1.08] 0.90 [0.45] 0.89 [0.54] 0.013* Serum potassium, meq/L 137.29 ± 5.25 138.05 ± 4.02 136.19 ± 18.13 0.574 Serum potassium, meq/L 3.38 [0.97] 3.67 [0.87] 3.55 [0.60] 0.214 Surgical procedure	Hemoglobin, g/dL	12.83 ± 3.56	13.37 ± 1.93	13.46 ± 2.96	0.237
C-reactive protein 1.49 [9.50] 0.72 [6.52] 0.84 [3.30] 0.158 Prothrombin time, s 14.05 [1.9] 13.80 [1.6] 14.05 [1.5] 0.144 Activated partial thromboplastin time, s 31.18 ± 16.69 27.37 ± 10.18 27.33 ± 8.09 0.32° Serum glucose, mg/dL 16.76 ± 80.89 139.71 ± 47.55 129.51 ± 51.52 0.000° Blood urea nitrogen, mg/dL 14.8 [13.3] 14.8 [8.6] 12.5 [7.0] 0.003° Serum creatinine, mg/dL 1.05 [1.08] 0.90 [0.45] 0.89 [0.54] 0.013° Serum potassium, meq/L 3.38 [0.97] 3.67 [0.87] 3.55 [0.60] 0.214 Surgical procedure V V V V V Clot evacuation 27 (21.8) 18 (28.6) 4 (3.2) 0.002° Ventriculoperitoneal shunt 11 (8.9) 9 (14.3) 9 (7.3) 0.316	Platelet, 10 ⁹ /L	240.45[125.10]	265.7[89.10]	262.4[107.22]	0.317
Prothrombin time, s14.05 [1.9]13.80 [1.6]14.05 [1.5]0.144Activated partial thromboplastin time, s 31.18 ± 16.69 27.37 ± 10.18 27.33 ± 8.09 0.032^* Serum glucose, mg/dL 166.76 ± 80.89 139.71 ± 47.55 129.51 ± 51.52 <0.001 Blood urea nitrogen, mg/dL 14.8 [13.3] 14.8 [8.6] 12.5 [7.0] 0.003^* Serum creatinine, mg/dL 1.05 [1.08] 0.90 [0.45] 0.89 [0.54] 0.013^* Serum sodium, meq/L 137.29 ± 5.25 138.05 ± 4.02 136.19 ± 18.13 0.574 Serum potassium, meq/L 3.38 [0.97] 3.67 [0.87] 3.55 [0.60] 0.214 Surgical procedure V V V V V Clot evacuation 27 (21.8) 18 (28.6) 4 (3.2) 0.002^* Ventriculoperitoneal shunt 11 (8.9) 9 (14.3) 9 (7.3) 0.316	C-reactive protein	1.49 [9.50]	0.72 [6.52]	0.84 [3.30]	0.158
Activated partial thromboplastin time, s 31.18 ± 16.69 27.37 ± 10.18 27.33 ± 8.09 0.032^* Serum glucose, mg/dL 166.76 ± 80.89 139.71 ± 47.55 129.51 ± 51.52 <0.001 Blood urea nitrogen, mg/dL $14.8 [13.3]$ $14.8 [8.6]$ $12.5 [7.0]$ 0.003^* Serum creatinine, mg/dL $1.05 [1.08]$ $0.90 [0.45]$ $0.89 [0.54]$ 0.013^* Serum sodium, meq/L 137.29 ± 5.25 138.05 ± 4.02 136.19 ± 18.13 0.574 Serum potassium, meq/L $3.38 [0.97]$ $3.67 [0.87]$ $3.55 [0.60]$ 0.214 Surgical procedure V V V V V V EVD $20 (16.1)$ $5 (7.9)$ $4 (3.2)$ 0.002^* Ventriculoperitoneal shunt $11 (8.9)$ $9 (14.3)$ $9 (7.3)$ 0.316	Prothrombin time, s	14.05 [1.9]	13.80 [1.6]	14.05 [1.5]	0.144
Serum glucose, mg/dL 166.76 ± 80.89 139.71 ± 47.55 129.51 ± 51.52 < 0.001	Activated partial thromboplastin time, s	31.18 ± 16.69	27.37 ± 10.18	27.33 ± 8.09	0.032*
Blood urea nitrogen, mg/dL 14.8 [13.3] 14.8 [8.6] 12.5 [7.0] 0.003* Serum creatinine, mg/dL 1.05 [1.08] 0.90 [0.45] 0.89 [0.54] 0.013* Serum sodium, meq/L 137.29 ± 5.25 138.05 ± 4.02 136.19 ± 18.13 0.574 Serum potassium, meq/L 3.38 [0.97] 3.67 [0.87] 3.55 [0.60] 0.214 Surgical procedure	Serum glucose, mg/dL	166.76 ± 80.89	139.71 ± 47.55	129.51 ± 51.52	< 0.001 *
Serum creatinine, mg/dL 1.05 [1.08] 0.90 [0.45] 0.89 [0.54] 0.013* Serum sodium, meq/L 137.29 ± 5.25 138.05 ± 4.02 136.19 ± 18.13 0.574 Serum potassium, meq/L 3.38 [0.97] 3.67 [0.87] 3.55 [0.60] 0.214 Surgical procedure 27 (21.8) 18 (28.6) 8 (6.5) < 0.002*	Blood urea nitrogen, mg/dL	14.8 [13.3]	14.8 [8.6]	12.5 [7.0]	0.003*
Serum sodium, meq/L 137.29 ± 5.25 138.05 ± 4.02 136.19 ± 18.13 0.574 Serum potassium, meq/L 3.38 [0.97] 3.67 [0.87] 3.55 [0.60] 0.214 Surgical procedure 27 (21.8) 18 (28.6) 8 (6.5) < 0.001	Serum creatinine, mg/dL	1.05 [1.08]	0.90 [0.45]	0.89 [0.54]	0.013*
Serum potassium, meq/L 3.38 [0.97] 3.67 [0.87] 3.55 [0.60] 0.214 Surgical procedure 27 (21.8) 18 (28.6) 8 (6.5) < 0.001	Serum sodium, meq/L	137.29 ± 5.25	138.05 ± 4.02	136.19 ± 18.13	0.574
Surgical procedure 27 (21.8) 18 (28.6) 8 (6.5) < 0.001 EVD 20 (16.1) 5 (7.9) 4 (3.2) 0.002* Ventriculoperitoneal shunt 11 (8.9) 9 (14.3) 9 (7.3) 0.316	Serum potassium, meq/L	3.38 [0.97]	3.67 [0.87]	3.55 [0.60]	0.214
Clot evacuation 27 (21.8) 18 (28.6) 8 (6.5) < 0.001 EVD 20 (16.1) 5 (7.9) 4 (3.2) 0.002* Ventriculoperitoneal shunt 11 (8.9) 9 (14.3) 9 (7.3) 0.316	Surgical procedure				
EVD 20 (16.1) 5 (7.9) 4 (3.2) 0.002* Ventriculoperitoneal shunt 11 (8.9) 9 (14.3) 9 (7.3) 0.316	Clot evacuation	27 (21.8)	18 (28.6)	8 (6.5)	< 0.001 *
Ventriculoperitoneal shunt 11 (8.9) 9 (14.3) 9 (7.3) 0.316	EVD	20 (16.1)	5 (7.9)	4 (3.2)	0.002*
	Ventriculoperitoneal shunt	11 (8.9)	9 (14.3)	9 (7.3)	0.316

 * *P* significant at < 0.05.

[†] Displayed as median [IQR]. BP blood pressure; MAP mean arterial pressure; IVH intraventricular hemorrhage; AVM arteriovenous malformation; EVD extraventricular drainage.

Table 4

Table 2

Significant bivariate analyses of predictors for mortality and good outcome at 30 davs

Parameter	OR (95% CI)	P *
Predictors for 30-day mortality		
Age \geq 55 years old	2.10 (1.32 – 3.34)	0.002
Bilateral extensor plantar reflexes	3.95 (2.44 – 6.38)	< 0.001
IVH	4.33 (2.66 – 7.06)	< 0.001
Subarachnoid extension	3.74 (2.17 – 6.45)	< 0.001
Mass effect	3.23 (1.96 - 5.32)	< 0.001
Hydrocephalus	5.17 (3.08 - 8.68)	< 0.001
Respiratory failure	10.18	< 0.001
	(5.32 – 19.48)	
EVD	3.73 (1.64 – 8.50)	0.002
Metabolic acidosis	4.50	0.001
	(2.00 – 10.11)	
High risk etiologies (amyloid angiopathy and	6.15	0.001
bleeding diathesis)	(2.41 – 15.73)	
GCS on admission	1.46 (1.15 – 1.85)	0.002
NIHSS on admission	1.59 (1.39 – 1.81)	< 0.001
Predictors for 30-day good outcome		
IVH	0.31 (0.16 – 0.63)	0.001
Mass effect	0.19 (0.09 – 0.41)	< 0.001
Hydrocephalus	0.27 (0.12 - 0.60)	0.001
Clot evacuation	0.19 (0.08 – 0.46)	< 0.001
GCS on admission	0.74 (0.57 – 0.97)	0.026
NIHSS on admission	0.71 (0.61 – 0.84)	< 0.001
ICH volume	0.96 (0.93 – 0.99)	0.005

P significant at < 0.05.

Table 3

Multivariate analyses of independent predictors for mortality and good outcome at 30 days.

Parameter	OR (95% CI)	P *
Independent predictors for 30-day		
GCS on admission NIHSS on admission Respiratory failure	1.37 (1.10 – 1.71) 1.51 (1.35 – 1.69) 7.61 (2.64 – 21.93)	$\begin{array}{l} 0.005 \\ < 0.001 \\ < 0.001 \end{array}$
Independent predictors for 30-day NIHSS on admission Mass effect	y good outcome 0.61 (0.52 – 0.70) 0.11 (0.33 – 0.38)	< 0.001 < 0.001

* *P* significant at < 0.05.

the equation was the presence of mass effect which increased the probability of someone with ICH to have a good outcome within 30 days. (Table 4).

The resulting oICH and mICH score were then evaluated for its diagnostic performance. We performed ROC analyses (Fig. 1a and b) simultaneously and determined the most optimum cut-off point for each scoring system with respect to 30-day mortality and good outcome as displayed in Table 5. Overall, mICH scored better over oICH score with respect to sensitivity and had comparable specificity for both 30-day mortality and good outcome. The mICH score also covered larger AUC for both mortality and good outcome parameters. The superiority of mICH over the oICH score against 30-day mortality and good outcome were also reflected by the consistently higher YI across the two outcomes.

Finally, we back-tested both models to determine whether or not the proportion for mortality and significant disability decreased while the percentage of good outcome increased in a linear fashion with the addition of each point from both scoring systems. Complete results were displayed in Fig. 2. In general, the percentage of mortality (mRS of 6) and significant disability (mRS of 3–5) of both models increased linearly with the addition of each point in both scoring systems. For instance,

Comparison of the original and modified CH score.						
Original ICH score	Points	Modified ICH score	Points			
GCS		NIHSS				
13 – 15	0	0 - 10	0			
5 - 12	1	11 - 20	1			
3 – 4	2	> 20	2			
ICH volume, cm ³		ICH volume, cm ³				
≥ 30	1	≥ 30	1			
< 30	0	< 30	0			
IVH		IVH				
Yes	1	Yes	1			
No	0	No	0			
Infatentorial origin of ICI	н	Infratentorial origin of IC	СН			
Yes	1	Yes	1			
No	0	No	0			
Age, y		Age, y				
≥ 80	1	≥ 55	1			
< 80	0	< 55	0			
		Respiratory failure				
		Yes	1			
		No	0			
		Mass effect				
		Yes	1			
		No	0			
Total score	0 6	Total score	0.8			

and a final and an a difficial OIT and an

there were 3 out of 63 patients (4.8%) who had mRS of 6 with an oICH score of 0. On the other hand, there was none out of 40 patients who had either mRS 3-5 or 6. On the extreme right-hand side of the equations, there was only 1 out of 17 patients (5.9%) who had good outcome (mRS of 2) with an oICH score of 4, while there were no survivors (i.e. 100% mortality) with a score of 5 and 6. Similarly, there was only each 1 out of 24 patients (4.2%) who had good outcome and significant disability (mRS of 3–5) with mICH score of 6, while there we no survivors with a score of 7 and 8. Both models demonstrated linear increment and decrement with respect to the proportion mortality and good outcome with the addition of each score point.

4. Discussion

The clinical grading system such as ICH score had been proven to be very useful in clinical settings as it allows the standardization of clinical assessment and prognostication, synchronize communication among interdisciplinary healthcare providers, and useful for risk stratification and operational variable definition in the settings of clinical trials or other research purposes [6]. The grading system preceding oICH score was known to be quite complicated with certain equations involved, thus precluding its utilitarian nature under emergency clinical scenario. However, the oICH score has several weak points, which, in our opinion, still opens a room for improvement. For instance, the use NIHSS instead of GCS and the replacement of age cut-off point from 80 to 55 years old.

The use of GCS score offers a quick assessment of clinical severity and thus, patient's general prognosis. However, in our opinion, GCS score was more appropriate in the settings of traumatic ICH as what the score was intended to use initially [7]. On the other hand, NIHSS was particularly designed with stroke patients in mind. Consequently, it captures plenty of clinical variations seen in many stroke syndromes which would otherwise be omitted when graded using GCS. For example, when grading a conscious patient with severe expressive aphasia using GCS, there would be no appropriate score given for the verbal component (i.e. E4M6Vx), thus the patient gets a total GCS and ICH score of 10 and +1 (already 13% increase of mortality), respectively. Whereas NIHSS can address the severity of aphasia (mild-to-moderate, severe, and global aphasia) and provides an incremental score

Diagonal segments are produced by ties.

Fig. 1. Head-to-head comparison of ROC curve between oICH and mICH score for (a) 30-day mortality and (b) 30-day good outcome, respectively.

in accordance to its severity, that under the previous scenario, the patient would obtain NIHSS and mICH score of 3 and + 0, respectively. Such a clinical scenario is not uncommon, particularly among surviving patients on a recovery period. In fact, the GCS in our study displayed significantly lower Wald statistics when compared with NIHSS, thus providing further assurance of replacing GCS with NIHSS.

The second modification was made by replacing the age cut-off point of 80 with 55 years old. The use of 80 years old as a cut-off point was thought to be non-representative in our population as the original study tended to include older subjects (66 \pm 15 years old) as opposed to the younger age of ICH onset among Indonesian population (48 \pm 15 years old) [8]. In fact, the 80 year-old cut-off value was also deemed inappropriate in another study involving a large urban population in the U.S [9]. Consequently, our study displayed a sensitivity of only 2.9% when using 80 year-old as a cut-off, whereas the use of 55 year-old provided the best compromise for sensitivity and specificity (59.6 - 61.5% and 60.3%, respectively).

Respiratory failure at initial presentation was also shown to be an independent predictor of 30-day mortality (OR 7.61; 95% CI 2.64–21.93; P < 0.001). We limited the diagnosis of respiratory failure

Table 5

Diagnostic	performance	of	the	original	and	modified	ICH	score	on	30-day
mortality a	and good outco	ome								

Parameter	30-day mortality		30-day good ou	itcome
	Original ICH score (cut-off 2)	Modified ICH score (cut-off 3)	Original ICH score (cut-off 1)	Modified ICH score (cut-off 2)
ROC curve				
Area under the curve (AUC)	0.79	0.91	0.83	0.88
95% CI	0.74 - 0.84	0.88 - 0.94	0.78 - 0.89	0.83 - 0.93
Р	< 0.0001*	< 0.0001*	< 0.0001*	< 0.0001*
Diagnostic perfo	ormance			
Sensitivity, %	50.8	80.6	77.4	86.3
Specificity, %	89.3	88.7	77.8	74.6
Positive predictive value, %	75.9	82.6	87.3	87.0
Negative predictive value, %	73.2	87.4	63.6	73.4
Youden index	0.40	0.69	0.55	0.61

* P significant at < 0.05

to be within the first 5 days since stroke onset. We did this because of at least three considerations, i.e.: 1) we need to establish the scoring system for prognostication as soon as possible, as a tool to improve an informeddecision making process. Any delay in obtaining one or more of the scoring components would therefore beat the purpose of this scoring system. 2) The majority of brain edema as a result of hematoma expansion in non-ICH patients occurred during the first two days (i.e. 0.2-1.7 days) [10]. Respiratory failure that occurred at an early stage was therefore regarded due to central process, hence require immediate assessment and treatment. 3) On several occasions, we received referral of ICH patients already on mechanical ventilation. The mean duration of VAP was 3.3 days after intubation [11].

Unsurprisingly, patients with immediate onset of respiratory failure were associated with midline shift and herniation signs, thus necessitating intubation and mechanical ventilation. Consequently, the increased 30-day mortality was mostly due to subsequent complications of the procedure, including pneumonia (aspiration or ventilator associated pneumonia), ARDS, and neurogenic pulmonary edema [12,13]. According to our analysis, most of the respiratory failure were caused by pneumonia. This was relevant since our center is a tertiary and final referral hospital for stroke cases, thus many admitted patients were initially treated in the community hospital for several hours to days preceding the transfer. The causes of pneumonia were invariable with the most frequent etiology being aspiration pneumonia due to inappropriate nasogastric tube placement or feeding and ventilator-associated pneumonia due to prolonged use of ventilator in the intensive care.

Midline shift is defined as degree of displacement of septum pellucidum relative to ideal midline on axial head CT imaging. Although there is no clear consensus as to the exact cut-off point to define a significant midline shift among non-traumatic ICH patients, a value of > 5 mm has been established as an operational definition in several studies. In accordance to Brain Trauma Foundation guideline, they recommended emergency sugery for ICH causing midline shift \geq 5 mm, as craniotomy can significantly improve the outcome. We understand that the etiology of the ICH in this study was traumatic (as opposed to stroke), but the point for prognostication is to decide whether or not to approach aggressively along with the risk of the procedure, thus should be based on a more confirming sign (i.e. significant midline shift). We understand that it is difficult to extrapolate data from TBI to nontraumatic ICH cases, because the latter tend to be older, have more comorbidities, and typically do not have multisystem injury. We therefore apply the principle of "do no harm" in the first place, and tend to be

Fig. 2. The proportion of patients who died, had significant disability, or good outcome within 30 days as assessed with (A) oICH, and (B) mICH score.

more conservative (rather than aggressive) in determining the cut-off point. In addition, previous attempt to modify ICH score for non-traumatic ICH patients by Cheung and Zou [6] also define mass effect as the presence of midline shift > 5 mm.

There was one study which pointed that midline shift > 3 mm was deemed as significant in non-traumatic ICH patients [10]. We have indeed conducted ROC analysis using a cut-off of 3 and 5 mm using our data. We found that the diagnostic performance (AUROC, sensitivity, specificity, PPV, NPV) between the two cut-off points to be similar and insignificant statistically for determining 30-day good outcome.

The original scoring system had not been routinely used as a predictor for those who survived the ICH and either had good outcome or significant disability (i.e. mRS score of 2 and 3–5, respectively). Addressing patient's probability of achieving either good outcome or significant disability is as equally important as predicting the risk of mortality, as the treatment goal of ICH patients is not preventing mortality per se, but also to achieve as minimum of disability as possible, ultimately leading to accurate treatment choices and informed-decision. Herein we obtained that high NIHSS on admission and the absence of mass effect were independent predictors of significant disability over good outcome among ICH survivors. The presence of mass effect impacting the significant disability instead of mortality was explainable. First, the mass effect represents one of emergency indication for surgery, thus resulting in life-saving outcome. Secondly, mass effect occurs in a biphasic pattern, i.e. within the first 2 days due to hematoma enlargement and in the second and third week due to edema [14]. Under the first scenario, mass effect would be treated aggressively via surgery and administration of anti-edema intravenous solution, such as mannitol or hypertonic saline. Whereas the appearance of edema on the second and third week might be missed by the clinician, given that the patient was on a recovery progress and most patients had been discharged from the hospital.

The resulting mICH score was proven to be superior over oICH with respect to 30-day mortality (YI 0.69 vs. 0.40) and good outcome (YI 0.61 vs. 0.55). mICH had a decent sensitivity, specificity, PPV, and NPV, making it more reliable to be a prognosticator. In fact, mICH score accommodated a more proportional score increment, in line with the increased risk of mortality, survival rate, and significant disability (Fig. 2).

However, our study also had limitations, e.g. we did not take into account comorbidities associated with prolonged hospitalization (lateonset pneumonia, urinary tract infection, sepsis, pressure injuries, wound-related bacteremia), factors associated with risk factors for rebleeding and clinical worsening, such as uncontrolled hypertension or the presence of late-onset hydrocephalus, as well as fundamental factors influencing long-term prognosis such as genetic predisposition, demographics, and socio-economic status [15,16]. This study also involved a relatively younger age which may not be generalizable in other countries with predominant elderly population.

I.PutuE. Widyadharma et al.

5. Conclusion

The mICH score was proven to be reliable and consistent as a risk grading assessment for non-traumatic ICH patients. The mICH was statistically superior to the oICH score in predicting both 30-day mortality and good outcome.

Author's contribution

All authors contributed equally to this study.

CRediT authorship contribution statement

All persons who meet authorship criteria are listed as authors, and all authors certify that they have participated sufficiently in the work to take public responsibility for the content, including participation in the concept, design, analysis, writing, or revision of the manuscript.

Furthermore, each author certifies that this material or similar material has not been and will not be submitted to or published in any other publication before its appearance in the Clinical Neurology and Neurosurgery.

Conflict of interest disclosure

The authors have no potential conflicts of interest to disclose.

References

- A.I. Qureshi, A.D. Mendelow, D.F. Hanley, Intracerebral haemorrhage, Lancet 373 (9675) (2009) 1632–1644, https://doi.org/10.1016/S0140-6736(09)60371-8.
- [2] S.J. An, T.J. Kim, B.W. Yoon, Epidemiology, risk factors, and clinical features of intracerebral hemorrhage: an update, J. Stroke 19 (1) (2017) 3–10, https://doi. org/10.5853/jos.2016.00864.
- [3] S. Tuhrim, J.M. Dambrosia, T.R. Price, J.P. Mohr, P.A. Wolf, D.B. Hier, C.S. Kase, Intracerebral hemorrhage: external validation and extension of a model for

prediction of 30-day survival, Ann. Neurol. 29 (6) (1991) 658-663, https://doi.org/10.1002/ana.410290614.

- [4] J.C. Hemphill 3rd, D.C. Bonovich, L. Besmertis, G.T. Manley, S.C. Johnston, The ICH score: a simple, reliable grading scale for intracerebral hemorrhage, Stroke 32 (4) (2001) 891–897, https://doi.org/10.1161/01.str.32.4.891.
- [5] C. Roussos, A. Koutsoukou, Respiratory failure, Eur. Respir. J. 22 (47 suppl) (2003) 3s-14s, https://doi.org/10.1183/09031936.03.00038503.
- [6] R.T. Cheung, L.Y. Zou, Use of the original, modified, or new intracerebral hemorrhage score to predict mortality and morbidity after intracerebral hemorrhage, Stroke 34 (7) (2003) 1717–1722, https://doi.org/10.1161/01. STR.0000078657.22835.B9.
- [7] G. Teasdale, B. Jennett, Assessment of coma and impaired consciousness. A practical scale, Lancet 2 (7872) (1974) 81–84, https://doi.org/10.1016/s0140-6736(74)91639-0.
- [8] K. Tini, D. Samatra, K. Wiryadana, I.G.P. Supadmanaba, Clinical profile of patients with cerebrovascular disease at stroke unit, sanglah general hospital, denpasar, Bali, Bali Med. J. 9 (2020) 129–136, https://doi.org/10.15562/bmj.v9i1.1665.
- [9] T. Nisar, A. Alchaki, M. Hillen, Validation of ICH score in a large urban population, Clin. Neurol. Neurosurg. 174 (2018) 36–39, https://doi.org/10.1016/j. clineuro.2018.09.007.
- [10] A.R. Zazulia, M.N. Diringer, C.P. Derdeyn, W.J. Powers, Progression of mass effect after intracerebral hemorrhage, Stroke 30 (6) (1999) 1167–1173, https://doi.org/ 10.1161/01.STR.30.6.1167 (doi:).
- [11] A.A. Kalanuria, W. Zai, M. Mirski, Ventilator-associated pneumonia in the ICU, Crit. care 18 (2) (2014) 208, https://doi.org/10.1186/cc13775.
- [12] J. Elmer, P. Hou, S.R. Wilcox, Y. Chang, H. Schreiber, I. Okechukwu, O. Pontes-Neto, E. Bajwa, D.R. Hess, L. Avery, M.A. Duran-Mendicuti, Jr Camargo CA, S. M. Greenberg, J. Rosand, D.J. Pallin, J.N. Goldstein, Acute respiratory distress syndrome after spontaneous intracerebral hemorrhage*, Crit. Care Med. 41 (8) (2013) 1992–2001, https://doi.org/10.1097/CCM.0b01se31828a3f4d.
- [13] A.M. Naidech, Intracranial hemorrhage, Am. J. Respir. Crit. Care Med. 184 (9) (2011) 998–1006, https://doi.org/10.1164/rccm.201103-0475CI.
- [14] A.R. Zazulia, M.N. Diringer, C.P. Derdeyn, W.J. Powers, Progression of mass effect after intracerebral hemorrhage, Stroke 30 (6) (1999) 1167–1173, https://doi.org/ 10.1161/01.str.30.6.1167.
- [15] Y.-N. Ho, S.-Y. Hsu, Y.-T. Lin, F.-C. Cheng, Y.-J. Lin, N.-W. Tsai, C.H. Lu, H. C. Wang, Predictive factors of neurologic deterioration in patients with spontaneous cerebellar hemorrhage: a retrospective analysis, BMC Neurol. 19 (1) (2019) 81, https://doi.org/10.1186/s12883-019-1312-8.
- [16] A. Alawieh, J. Zhao, W. Feng, Factors affecting post-stroke motor recovery: Implications on neurotherapy after brain injury, Behav. Brain Res 340 (2018) 94–101, https://doi.org/10.1016/j.bbr.2016.08.029.