Production and Income Over Feed and Chick Cost (IOFCC) of Broiler Chicken Which Feed The Fermented Dragon Fruit Skin Ration (Hylocereus Polyrhizus)

I. N. Tirta Ariana¹, Gusti A. M. Kristina Dewi², M. Wirapartha³, I. W. Wijana⁴, I. K. Anom Wiyana⁵ and N. W. Sitiari⁶

¹²³⁴⁵Fakultas Peternakan, Universitas Udayana, Denpasar, Bali
⁶Magister of Management, Postgraduate Program, Universitas Warmadewa, Denpasar, Bali

tirtaariana@unud.ac.id

Received: 13/04/2018 Revised: 27/06/2018 Published: 30/09/2018

How to cite in APA style:

Abstract—The objective of the study is to know the production and the income over feed and chick cost (IOFCC) of broiler chicken which feed the fermented dragon fruit skin ration (Hylocereus Polyrhizus). The design of the study was Randomized Complete Design (RCD) with 3 treatments and 5 replications, where each replication consisted of 10 DOC broiler chicken; so total chicken used was 150 heads. Treatments given were: R0: ration of fruitless fruit skin of dragon, fermented; R1: ration with 5% flour of fermented dragon fruit skin and R2: ration with 7% fermented dragon fruit skin flour. Variables observed: final body weight, body weight gain, ration consumption, FCR, Income over Feed and Chick Cost (IOFCC). The data obtained were analyzed by variance, if between the treatments were significantly different (P <0.05), it continued with the Duncan distance test. The results showed that the treatment of R1 and R2 was significantly different (P <0.05) on the final body weight, body weight gain, feed intake, FCR, Income Over Feed and Chick Cost (IOFCC) against R0. Conclusions of this study: the use of dragon fruit skin flour (Hylocereus Polyrhizus) fermented to 7% in the ration affect the final body weight, body weight gain, FCR, ration, IOFCC broiler aged 5 weeks and 5% without dragon fruit skin (Hylocereus Polyrhizus) fermented.

Keywords: Body weight; broiler chicken; dragon fruit flour; FCR; IOFCC.

INTRODUCTION
In broiler production, maintenance about 60 - 70% of total cost can be attributed to feed cost. Broiler chickens faced with the variety of problems such as the increasing feed prices are enough sharply, because the feed is a primary need at a cost of approximately 70% (Banson., et al, 2015). The high feed costs due to raw materials derived from imported commodities and its use compete with humans. The high price of feed indirectly requires that farmers are looking for alternative feed ingredients so it can lower the feed costs and maximizes revenues.

According to Mustika (2014) dragon fruit peel is agricultural waste which has not been widely used by the community, especially in Indonesia. Dragon fruit is a key raw material in the manufacture of juices, jams, syrups, chips or other food ingredients by key material of the dragon fruit. Part of dragon fruit 30-35% is peel and still rarely or even not been fully utilized although some studies have reported that peel dragon fruit contains high antioxidant and contents phenolics in the dragon fruit peel is amounted 28.16 mg/100 g, and in addition to having antioxidant, it also contains anthocyanins (Citramukti, 2008; Nurliyana et al., 2010). The low protein and high crude fiber in fruit peels is a constraint in the utilization as animal feed especially broiler...
Production and Income Over Feed and Chick Cost (IOFCC) of Broiler Chicken Which Feed The Fermented Dragon Fruit Skin Ration (Hylocereus Polyrhizus)

METHOD
This research was conducted for over three months at the Teaching Farm, Bukit Animal Science of University of Udayana. We used livestock as material of experiment, including broiler chickens produced by PT. Jaffa Cimias of Denpasar consisting of 150 heads. Diets used in this research was independently prepared by recommendation (Scott et al., 1982) which consisted of yellow corn, fish meal, soybean meal, rice bran, dragon fruit peel meal, dragon fruit peel meal fermented, coconut oil, premix and CaCO3. Diets given were iso energy (2,900 Kcal/kg) and iso protein [20% (Table 1)].

Cage used in this research is 20 battery cages with a length of 80 cm, width of 50 cm and height of 75 cm, filled with 10 chickens. The cage made of wood, the bottom cage made of wire so that livestock faeces can be accommodated; each plot of cage is equipped with a feed; and drinking water are made of bamboo.

Materials used in this research were a diet and drinking water, torch lighting cage, machine grinding feed, knife, bowl, spoons stirrer, scissors, paper labels, markers, plastic bags, oven, stove, pans, trays, thermometer, wood, bamboo, wire, plastic carpet, sprayer and digital scales.

The cducation of the study was carried out in two stages, namely making of dragon fruit peel meal, covering the fresh dragon fruit peel was chopped small, then dried and grinded up into flour; we made the dragon fruit peel meal fermented with Saccaromyces Sp. In the process of fermentation, solution was ready for use. Fermentation process dragon fruit peel was chopped small, dried up, inserted in plastic, and then moistened with solution fermentation, closed tightly (3-5 days), after it is dried, ground into flour and ready for use.

This study employed a completely randomized design (CRD) with 3 treatments and 5 replications, each @ 10 birds. Treatments were: R0 = Ration without used dragon fruit skin flour (control); R1= Ration with used 5% dragon fruit skin flour fermented; and R2 = Ration with used 7% dragon fruit skin flour fermented.

Chickens Maintenance
One Day Old Chickens or Day Old Chick (DOC) maintained as many as 45 individuals. Chickens were vaccinated using ND vaccine. Chickens were inserted in a cage that has been given a number treatments and every unit cage was filled with 5 chickens.

Variable Observed: Initial weight, final body weight, body weight gain, feed consumption, feed conversion ratio (FCR) and...
IOFCC. The cost of feeds, acquisition and preparation of Ration Fermentation and return from sales of finished broilers were determined in income of over feed and chickcost (IOFCC) which was calculated using the following formula (Magpantay et al., 2013):

\[
\text{IOFCC} = [(\text{Average weight of broilers, kg}) \times (\text{Price per kg live weight of broiler})] - [(\text{Price of day-old chicks}) + (\text{Total feed consumed}) \times (\text{price of feed})].
\]

Data analysis
Data were analyzed statistically by ANOVA and when there were significant differences, it was continued by providing test of Duncan (Steel., & Torrie, 1993). The data were analyzed using statistic application program SPSS 17.

RESULTS AND DISCUSSION

Performance
The effects of ration on performance of broiler chickens aged 5 weeks are summarized in Table 2. The results of the study showed that the broiler chickens given feed R1 and R2 increase the feed consumption significantly (P<0.05) than R0 of the feed consumption. It is possibly due to the dragon fruit (Hylocereus polyrhizus) peel meal without fermentation. Body weight gain and the highest utilization of ration efficiency through treatment of R2 are the results with the highest substrate degradation ability and with the highest cellulose enzyme activity. Dewi et al., (2014) and Hagan et al., (2016) observed differences in feed intake and FCR of Broiler. It is found that a well managed system should be in range of 1.9 to 2.15, depending on the nutrient density and feeding and feeding management of broiler (Kamran et al., 2008).

The increase in body weight by feed dragon fruit (Hylocereus polyrhizus) peel meal fermented in R1 and R2. This is probably due to dragon fruit (Hylocereus polyrhizus) peel meal fermented. It was able to produce a variety of fiber degradation microbes and microbial probiotics that are able to improve digestibility and metabolism of the rations. According Mahata et al., (2014) dragon fruit peel in broiler diet is up to 15% and did not affect protein content of thigh meat. This shows that the phytochemival content in dragon fruit peel (Lycopen, Betacarotene and Tanin) did not affect the protein absorption or protein disposition in thigh meat. The inclusion of 5% dragon fruit peel in diet lowers cholesterol effectively.

Feed conversion ratio (FCR) measured from broiler reared for four weeks in this study is shown in Table 2. Ration dragon fruit (Hylocereus polyrhizus) peel meal fermented

<table>
<thead>
<tr>
<th>Ingredients (%)</th>
<th>Composition (%)</th>
<th>R0</th>
<th>R1</th>
<th>R2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>43.57</td>
<td>41.39</td>
<td>40.86</td>
</tr>
<tr>
<td>Corn</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>Fish Meal</td>
<td>18.44</td>
<td>18.49</td>
<td>18.51</td>
<td></td>
</tr>
<tr>
<td>Soybean Meal</td>
<td>25</td>
<td>21.93</td>
<td>20.43</td>
<td></td>
</tr>
<tr>
<td>Race Brand</td>
<td>0</td>
<td>5</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>Dragon Fruit Skin Flour Fermented</td>
<td>4.79</td>
<td>5</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Coconut Oil</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td></td>
</tr>
<tr>
<td>Premix</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td></td>
</tr>
<tr>
<td>CaCo3</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td></td>
</tr>
<tr>
<td>Nutrient Content of Diets *Standard</td>
<td>2900</td>
<td>2900</td>
<td>2900</td>
<td>2900</td>
</tr>
<tr>
<td>Energy KCal/kg</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>Crude Protein (%)</td>
<td>10.35</td>
<td>10.14</td>
<td>9.95</td>
<td></td>
</tr>
<tr>
<td>Crude Fat (%)</td>
<td>3.08</td>
<td>3.73</td>
<td>3.90</td>
<td>5</td>
</tr>
<tr>
<td>Calcium/Ca (%)</td>
<td>0.65</td>
<td>0.73</td>
<td>0.77</td>
<td>0.90</td>
</tr>
<tr>
<td>Phosfor/P (%)</td>
<td>0.67</td>
<td>0.64</td>
<td>0.62</td>
<td>0.60</td>
</tr>
</tbody>
</table>

Explanation: R0= Ration without used dragon fruit skin flour (control); R1= Ration with used 5% dragon fruit skin flour fermented; and R2 = Ration with used 7% dragon fruit skin flour fermented * Standard (Scott et al.,1982)
R1 and R2 significantly (P<0.05) affected feed conversion ratio than R0. This showed that addition of dragon fruit (Hylocereus polyrhizus) peel meal fermented in R1 - R2 caused the difference in feed utilization efficiency. The body weight gain of Broiler chickens were higher with better feed utilization indicating that they were given the rations by using 9% of dragon fruit skin flour fermentation improved the process of digestion of feed in their digestive tract. This is likely due to dragon fruit skin flour fermentation containing various microbes that degrade fiber and probiotic microbes so it will be able to increase the ration digestibility and metabolism. According to Weiss & Hogan (2007) material having the antioxidant content of livestock can reduce the effects of free radicals, such as increasing feed consumption. Mustika et al., (2014) mentioned that this condition is caused by free radicals which can lead to oxidative stress in livestock resulting in lower feed consumption. Oxidative stress is a state of imbalance between the amount of free radicals and antioxidants in the body that can trigger the occurrence of cell damage and lower the immune system (Nuriyana et al., 2010). The Phytochemical content in dragon fruit peel (Lycopene, Beta-carotene and Tanin) did not affect the intestinal and caeca length. According to Weiss & Hogan (2007) a material having the antioxidant content of livestock can reduce the effects of free radicals such as increasing feed consumption. The effect of treatment for performance and IOFCC can be seen on the table 2.

The results showed that IOFCC values were respectively Rp. 35159.75 (R2), Rp. 34764.54 (R1) and Rp. 33188.1 (R0) (Table 2). In Table 2 it can be seen that R1 treatment obtained by IOFCC is amounted to Rp. 1576.44, - greater than treatment (R0), while treatment of R2 of Rp. 1971.65, - biggest than R0 and treatment R2 is amounted to Rp. 395.21, - from treatment R1. Provision of 7% of rations of fermented dragon fruit skin can save the ration cost, that is, Rp. 1971.65, /ekor/period, compared with control (R0).

<table>
<thead>
<tr>
<th>Variable</th>
<th>R0</th>
<th>Treatment 1</th>
<th>SEM 3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial Weight (g)</td>
<td>144.60a</td>
<td>144.43a</td>
<td>10.02</td>
</tr>
<tr>
<td>Final body Weight (g)</td>
<td>1360.00b</td>
<td>1388.00b</td>
<td>11.25</td>
</tr>
<tr>
<td>Body Weight Gain (g)</td>
<td>1215.4 b</td>
<td>1243.57a</td>
<td>10.1</td>
</tr>
<tr>
<td>Feed Consumption (g)</td>
<td>1873.53a</td>
<td>1808.5b</td>
<td>10.06</td>
</tr>
<tr>
<td>Feed conversion Ration (g)</td>
<td>1.54 a</td>
<td>1.45b</td>
<td>0.6</td>
</tr>
<tr>
<td>IOVCC</td>
<td>33188.10</td>
<td>34764.54</td>
<td>35159.75</td>
</tr>
</tbody>
</table>

Explanation: 1) R0 = Ration without used dragon fruit skin flour (control); R1 = Ration with 5% dragon fruit skin flour fermentation and R2 = Ration with 7% dragon fruit peel fruit skin flour fermentation, 2) Values with the same superscript in the same row shows the difference was not significant (P>0.05), 3) SEM: Standard Error of the Treatment Means

CONCLUSIONS

It can be concluded that research on dragon fruit skin flour (Hylocereus Polyrhizus) fermented to 7% in the ration affect the final body weight, body weight gain, FCR, ration, IOFCC broiler aged 5 weeks and 5% without dragon fruit skin (Hylocereus Polyrhizus) fermented.

ACKNOWLEDGEMENT

This research was funded by Indonesia Ministry of Research, Technology, and Higher Education through LPPM, University of Udayana - (Group Research Divisi Research Grant. All authors are grateful for excellent technical helps during the experiment period.

REFERENCES

AAAP Animal Science Congress, 2, 10-14.