Karakteristik Alkohol

by Aditya Wirajaya
The objective of the research was to determine the effect of fermentation time and the optimal fermentation time producing the highest alcohol content of the product. This study used a randomized block design with fermentation time as a treatment which was consists of 11 levels namely 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, and 10 days. The results showed that the naturally anaerobic fermentation time did not affect the alcohol content, pH, total dissolved solids of the alcohol product. The treatment of natural fermentation for 5 days was an appropriate treatment to produce alcohol with the characteristics of the alcohol content of 2.05% (w/w), acidity (pH) 3.41, total dissolved solids 5.30 brix, 0.216% total acid.

Keywords: alcohol, liquid pulp, fermentation time

Pemanfaatan tanaman kakao saat ini masih terbatas pada biji dan kulit kakao, sedangkan bagian lainnya yaitu pulpa kakao belum banyak dimanfaatkan (Chahyaditha, 2011). Pulpa biji kakao merupakan jaringan halus yang berlendir yang membungkus biji kakao yang terdapat sampai 20-30% dari berat biji kakao, diantaranya mengandung gula dengan kadar yang sangat tinggi sekitar 10-13% (Lopez, 1986). Selama fermentasi dapat dihasilkan cairan pulpa 15-20% dari berat biji kakao yang dilermentasi (Ganda-Putra et al., 2008). Potensi cairan pulpa yang cukup besar selama ini hanya dibuang begitu saja di sekitar tempat pengolahan sehingga dapat berdampak buruk terhadap lingkungan sekitarnya. Padahal limbah cairan pulpa dapat di proses lebih lanjut sebagai sumber energi alternatif yaitu bioetanol.

1 METODE PENELITIAN

Tempat dan Waktu Penelitian
Alat

Alat-alat yang digunakan dalam penelitian ini adalah wadah fermentasi timbangan digital, pisau, lilin, tisu, gallon (6 liter), selang, plastik, erlenmeyer, labu takar (Pyrex), gelas ukur (Pyrex), thermometer, oven (Ecocell), gelas beaker (Pyrex), piknometer (IWAKI), kertas saring, hand refractometer (ATAGO), pH meter (SCHOTT), timbangan analitik, pipet tetes, aluminium foil dan botol – botol kaca.

Bahan

Bahan yang digunakan dalam penelitian ini adalah cairan pulpa hasil samping fermentasi biji kakao lindak selama 1 sampai 3 hari, yang diperoleh dari Desa Angkah, Kecamatan Selemadeg Barat, Kabupaten Tabanan. Bahan-bahan kimia yang digunakan yaitu: aquades, NaOH 0,1 N, phenolphthalein yang semuanya adalah pro-analysis (p.a) dari aquades.

Rancangan Percobaan

Penelitian ini dirancang dengan Rancangan Acak Kelompok (RAK), dengan perlakuan lama fermentasi 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 hari. Masing-masing perlakuan dikelompokkan menjadi 2 berdasarkan ketersediaan bahan baku sehingga di peroleh 22 unit percobaan.

Model matematis dari Rancangan Acak Kelompok sederhana yang digunakan adalah sebagai berikut:

\[Y_{ij} = \mu + \tau_i + \beta_j + e_{ij} \]

Keterangan:

\(i \) = Perlakuan waktu pengamatan
\(\tau_i \) = kelompok ke-1 dan ke-2
\(\mu \) = rerata umum
\(\beta_j \) = Pengaruh perlakuan waktu pengamatan ke-i
\(e_{ij} \) = Pengaruh acak pada perlakuan ke-I dan kelompok ke-j

Data yang diperoleh dari masing-masing perlakuan dianalisis keragamanannya, apabila perlakuan berpengaruh nyata terhadap parameter yang diamati maka dilanjutkan dengan uji Duncan (Steel dan Torrie, 1993).

Pelaksanaan Penelitian

Penelitian dimulai dengan pengambilan sampel cairan pulpa hasil samping fermentasi biji kakao di petani kakao yang berlokasi di Desa Angkah Kecamatan Selemadeg Barat Kabupaten Tabanan. Cairan pulpa kemudian disaring menggunakan kain saring untuk memisahkan kotoran
yang terdapat pada cairan. Cairan pulpa yang telah disaring dimasukkan ke dalam wadah fermentasi dengan kapasitas 6 liter. Fermentasi yang dilakukan adalah fermentasi anaerob (fermentasi tanpa udara), menggunakan telesi lilin untuk menerapkan penutup wadah fermentasi agar tidak ada ruang udara masuk. Ada berupa 2 selang yang dimasukkan ke dalam cairan. Masing-masing selang tersebut memiliki fungsi yang berbeda, selang pertama dimasukkan ke dalam botol yang sudah berisi aquades untuk mengetahui kelancaran fermentasi dengan melihat gelembung (CO₂) yang ada di dalam botol tersebut, sedangkan selang yang kedua digunakan untuk mengambil sampel kemudian ujung selang tersebut ditutup rapat untuk mecegah udara agar tidak masuk kedalam. Fermentasi dilakukan selama 10 hari. Pengamatan terhadap variabel dilakukan setiap hari, mulai hari ke-0 sampai hari ke-10.

Diagram alir pelaksanaan penelitian pengaruh waktu fermentasi alami cairan pulpa hasil samping fermentasi biji kakao secara anaerob terhadap karakteristik alkohol disajikan pada Gambar1.

Gambar 1. Diagram alir penelitian

Variabel yang diamati

Penentuan kadar alkohol

Prosedur penentuan kadar alkohol ditentukan dengan menggunakan piknometer sesuai dengan petunjuk (Putri dan Sukandar, 2008). Produk diambil sebanyak 100 ml kemudian dilanjutkan proses destilasi suhu 80°C. Destilat yang dihasilkan ditumpung dengan erlenmenyer sampai volume 50 ml, kemudian ditimbang dan beratnya dicatat, sebagai pembanding berat alkohol
(berat piknometer + destilat) dan (berat piknometer + aquades). Hasil perhitungan berat jenis alkohol kemudian dikonversikan dengan menggunakan tabel konversi BJ (Bobot Jenis) alkohol.

\[
\text{Bobot jenis (BJ)} = \frac{w_3 - w_1}{w_2 - w_1}
\]

Keterangan:

\(w_1\) = berat piknometer kosong (g).

\(w_2\) = berat piknometer dan aquades (g).

\(w_3\) = berat piknometer dan distilat cuka fermentasi (g)

Penentuan total asam

Pengujuan total asam dengan metode titrasi. Sebanyak 10 ml dari sampel, ditetes penolpohalein (PP) 1% sebanyak 3 tetes, setelah itu sampel dititrasi dengan NaOH 0,1 N sampai terlihat warna merah muda konstan selama 30 detik. (Hadiwijiyoto, 1994). Kadar asam dihitung dengan rumus:

\[
\text{Kadar total asam (meq NaOH/g)} = \frac{(ml)\text{titran}}{\mu \text{ sampie}} \times N \text{. NaOH}
\]

Penetuan derajat keasaman (pH)

Deraajat keasaman ditentukan dengan mengukur pH produk sebanyak 100 ml contoh diambil secara aseptis dari sampel. Contoh diukur dengan menggunakan pH meter, menurut (Richana, 2011). Sebelumnya pH meter dikalibrasi dengan buffer fosfat pH 4 dan pH 7 dan dibiarkan hingga stabil.

Penetuan total padatan terlarut (TPT)

HASIL DAN PEMBAHASAN

Kadar alkohol

Hasil analisis ragam menunjukkan bahwa bila fermentasi berpengaruh tidak nyata \((p<0.01)\) terhadap kadar alkohol hasil fermentasi anaerob cairan pulpa hasil samping fermentasi biji kacau. Nilai rata-rata dan perubahan kadar alkohol pada proses fermentasi disajikan pada Gambar 2.
Gambar 2. Perubahan kadar alkohol selama proses fermentasi

Gambar 2. menunjukkan bahwa cenderung terjadinya peningkatan kadar alkohol selama proses fermentasi berlangsung sampai hari ke-5 (2,05%) akan tetapi cenderung konstan terjadi pada hari ke-6, 7, 8, 9, 10. Kadar alkohol (% w/w) dapat dijelaskan bahwa pada saat 5 hari mikroba memiliki aktivitas paling besar atau bearada pada logarithmic phase. Hal ini sesuai pendapat Fauzi, (2012). mikroba akan mengalami deklinasi phase dan stationary phase, yaitu jumlah mikroba yang tumbuh semakin melambat kemudian diikuti dengan fenomena jumlah mikroba yang mati dan hidup hampir sama sehingga tidak ada penambahan jumlah mikroba yang akan mengubah substrat menjadi etanol oleh karena itu etanol yang terbentuk cenderung konstan. Setelah mikroba mengalami stationary phase maka akan berlanjut menjadi death phase/fase kematian.

pH

Hasil analisis ragam menunjukkan bahwa lama fermentasi berpengaruh sangat nyata (p<0,01) terhadap pH hasil fermentasi anaerob pada cairan pulpa hasil samping fermentasi biji kakao. Nilai rata-rata dan perubahan pH pada proses fermentasi pada Gambar 3.
Gambar 3. Perubahan pH selama proses fermentasi

Total Padatan Terlarut (TPT)

Hasil analisis ragam menunjukkan bahwa lama fermentasi berpengaruh sangat nyata (p<0.01) terhadap total padatan terlarut (TPT) fermentasi anaerob pada cairan pulpa hasil samping fermentasi biji kakao. Nilai rata-rata dan perubahan total padatan terlarut (TPT) pada proses fermentasi pada Gambar 4.

Gambar 4. Perubahan total padatan terlarut (TPT) selama proses fermentasi
Kandungan total padatan terlarut pada fermentasi cairan pulpa hasil samping fermentasi biji kakao dipengaruhi oleh lama fermentasi. Semakin lama proses fermentasi berlangsung total padatan terlarut pada media cairan pulpa hasil samping fermentasi biji kakao cenderung menurun, disebabkan oleh berkurangnya gula yang terlarut dalam cairan. Berkurangnya gula disebabkan oleh bakteri yang menggunakan gula sebagai sumber karbon untuk melakukan metabolisme. Total padatan terlarut terdiri dari gula, pektin dan serat. Sehingga yang dapat menyebabkan menurunnya total padatan terlarut salah satunya juga pektin yang terdapat pada cairan pulpa karena pektin bersifat gel yang dapat larut dalam cairan pulpa.

Total Asam

Hasil analisis ragam menunjukkan bahwa lama fermentasi berpengaruh sangat nyata \((p<0.01)\) terhadap kadar asam asetat fermentasi anaerob pada cairan pulpa hasil samping fermentasi biji kakao. Nilai rata-rata dan perubahan kadar asam asetat pada proses fermentasi pada Gambar 5.

![Gambar 5. Perubahan total asam selama proses fermentasi](image)

Gambar 5. menunjukkan bahwa terjadinya peningkatan pada total asam pada cairan pulpa selama proses fermentasi pada hari ke-2 (0.216%) , lama penyimpanan 10 hari. Hal ini disebabkan semakin rendah pH maka semakin tinggi total asam yang diperoleh selama proses penyimpanan semakin lama akan meningkatkan jumlah total mikroba. (Tranggono dan Sutardi, 1991), menyatakan bahwa beberapa jenis mikroba yang terdapat dalam cairan pulpa adalah bakteri yang tergolong dalam *Lactobacillus sp*. Mikroba ini akan mengubah gula terlarut seperti glukosa, frukosa, dan sukrosa menjadi campuran asam laktat dan asam asetat.
PENUTUP

Kesimpulan

1. Lama fermentasi secara anaerob cairan pulpa hasil samping fermentasi biji kakao berpengaruh terhadap total asam, derajat keasaman (pH) dan total padatan terlarut destilat alkohol, tetapi tidak berpengaruh terhadap kadar alkohol.

2. Lama fermentasi yang tepat untuk menghasilkan alkohol dengan kadar alkohol tertinggi adalah 5 hari dengan kadar alkohol 2.05 (%w/w), total asam asetat 2.16 (meq NaOH/g), derajat keasaman (pH) 3.41 dan total padatan terlarut 5.30 brix

Saran

1. Berdasarkan hasil penelitian, untuk menghasilkan alkohol dengan kadar tertinggi disarankan untuk melakukan fermentasi cairan pulpa hasil samping fermentasi biji kakao sampai hari ke-5. Untuk menghasilkan alkohol yang baik/tinggi diperlukan waktu fermentasi yang lama dan penambahan khamir.

2. Disarankan untuk penelitian lanjutan perlu dilakukan mengenai identifikasi terhadap jenis mikroba yang terdapat pada fermentasi anaerob cairan pulpa hasil samping fermentasi biji kakao.

DAFTAR PUSTAKA

91
Karakteristik Alkohol

ORIGINALITY REPORT

<table>
<thead>
<tr>
<th>% SIMILARITY INDEX</th>
<th>% INTERNET SOURCES</th>
<th>% PUBLICATIONS</th>
<th>15% STUDENT PAPERS</th>
</tr>
</thead>
</table>

PRIMARY SOURCES

<table>
<thead>
<tr>
<th>#</th>
<th>Source Description</th>
<th>Source Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Submitted to Udayana University</td>
<td>Student Paper</td>
</tr>
<tr>
<td>2</td>
<td>Submitted to iGroup</td>
<td>Student Paper</td>
</tr>
<tr>
<td>3</td>
<td>Submitted to Universitas Jember</td>
<td>Student Paper</td>
</tr>
<tr>
<td>4</td>
<td>Submitted to Universitas Muhammadiyah Surakarta</td>
<td>Student Paper</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Exclude Quotes</th>
<th>Exclude Bibliography</th>
<th>Exclude Matches</th>
</tr>
</thead>
<tbody>
<tr>
<td>ON</td>
<td>ON</td>
<td>< 1%</td>
</tr>
</tbody>
</table>