Antibacterial Effect of Nocardia sp. Against Methicillin Resistant Staphylococcus aureus (MRSA)

Ni Made Raningsih1*, Retno Kawuri2 and I.B.Gede Darmayasa2
1Master of Biology, Graduate Program Udayana University, Bali
2Department of Biology, Faculty of Science, Udayana University, Bali
*Corresponding Author E-mail: maderaningsih@gmail.com

ABSTRACT
Pathogenic bacterial resistance against antibiotic was one of major problem in medical concern. Staphylococcus aureus or Methicillin Resistant Staphylococcus aureus (MRSA) is one of those pathogenic bacteria. This research purposes to discover the new antibacterial substance using strain indentified as Nocardia sp. which belongs to Actinomycetes. Bacterial isolate was collected from Udayana University Microbiology Laboratory, Indonesia. Antagonistic evaluation using pour plate method in Nutrient Agar (NA) medium shows Nocardia sp. 1 strain has the highest result of inhibition zone test (22.7 mm long) against MRSA compared to 6 other strain. Nocardia sp. 1 strain filtrate tested on MRSA has a MIC level of 2%. Later identification of chemicals substance contained in Nocardia sp. 1 strain filtrate detects substances such as 3,5 -Dichloro- 2 pyridone, Benzeneacetic acid, Hepatdecane, Phenol. 2,4-bis(1.1-dimethylethyl), Dodecanoic Acid Methyl Ester, Hexadecanoic Acid Methyl Ester, 1-(+)-Ascorbic Acid 2.6 Dihexadecanoate.

Key words: Antibacterial, Actinomycetes, Methicillin Resistant Staphylococcus aureus, MIC.

INTRODUCTION
Methicillin Resistance Staphylococcus aureus (MRSA) is a Gram positive bacteria which is resistant against antibiotics, such as penicillin, oxacylin, beta-lactam, etc. In Asia region, S. aureus resistance to ciprofloxacin reaches 37%. Mardiastuti et al.,10 reported that the percentage of Asia MRSA resistance is high in several countries like Taiwan 60%, China 20%, Hong Kong 70%, Philippine 5%, and Singapore 60%. S. aureus can cause many syndromes such as bacteremia, respiratory tract infection, endocarditic, urinary tract infection, and skin infection4. Based on that, it is important to find new antimicrobial substances, aside from the basic usage of antibiotic. Actinomycetes is the biggest source of microbes which produce secondary metabolites for instance antibiotic and nonantibiotic bioactive metabolites like enzymes and immunity regulator6. As Actinomycetes member, Nocardia sp. is able to produce secondary metabolites. Ruiz et al.14 explains that Nocardiacin A and B (Nocardia sp.), rifamycin (Nocardia mediterranea), ansamitocin (Nocardia brasiliensis), 3′-O-demethyl mutactimycin (Nocardia transvalensis), neo-nocardin (Nocardia kuroishi), and cephamycin C (Nocardia lactamurans) were reported belong to secondary metabolites from genus Nocardia. Therefore, it is aimed in the present study firstly to investigate the capability of Nocardia sp. isolates in inhibiting MRSA growth, secondly to investigate the filtrate potential against MRSA, and the last is to determinate the Minimum Inhibitory Concentration (MIC) value.
MATERIALS AND METHODS

Samples Collection
Isolates culture of Nocardia sp. were collected from Udayana University Microbiology Laboratory, Indonesia. The numbers of Nocardia sp. strain being used are six isolates.

Antagonistic test of Nocardia sp. against Methicillin Resistance Staphylococcus aureus (MRSA)
Pour plate method was conducted for antagonistic test. Bacterial colony to be tested was planted in NaCl physiology liquid 0.9%. Mc Farland standard was (in 1.0 x 10⁸ of bacterial density) used to uniform the bacterial turbidity. Then this bacteria was homogenized in Nutrient Agar (NA) medium in petridish. After it was hardened, Nocardia sp. was placed on the center of the petridish. Next it was incubated in 28±2°C for 24 hour.¹¹

Preparation of Nocardia sp. filtrate
The most potential Nocardia sp. that showed best inhibition zone was grown in Yeast Extract Malt Broth (YEMA) and incubated in 28±2°C for 24 hour. The grown Nocardia sp. strain was taken by using cork borer and placed inside of a glass bottle filled with YEMA, followed by incubation in a shaker at 80 rpm for 7 days¹³. Afterwards, 15 minutes centrifugation at 10⁴ rpm was conducted, the resulted filtrate was evaporated then separated using ethyl-acetate 1:1 (v/v), then homogenized and settled for 24 hour. The next step is the ethyl-acetate phase was vaporized by evaporator machine at 40°C. The resulted product was tested in vitro against MRSA using diffusion chamber method¹³.

Minimum Inhibitory Concentration filtrate Nocardia sp. Using diffusion chamber method
Petridish filled with 10 mL NA and 200 µL MRSA isolate suspension was settled until it is hardened, then the center was holed with 5 mm cork borer to create a diffusion chamber. The chamber was filled with 20 µL Nocardia sp. filtrate at percentage (v/v) of 100%, 90%, 80%, 70%, 60%, 50%, 40%, 30%, 20%, 10% and ethyl-acetate was used as negative control and linezolid as positive control. Each of concentration used triple repetition. The result was noted by measuring the inhibition zone.

Chemical compound analysis using Gas Chromatography Mass Spectrometry (GCMS) for Nocardia sp. filtrate
The highest inhibition zone test resulted on each phase between water phase and ethyl acetate phase undergo Thin Layer Chromatography (TLC) test. Filtrate was spotted on TLC plate (silica gelplat Merck 60 F254) which soluble with chloroform:ethyl-acetate:acete-acid mixture (7:3:1, v/v). Active spot was visualized under UV rays λ254 and λ365 nm (Ali, 2009)¹. Column Chromatography was used to purify the compound and the identification of the filtrate compound was conducted using GCMS.

RESULT

Antagonist Activity of Nocardia sp. against Methicillin Resistance Staphylococcus aureus (MRSA)

<table>
<thead>
<tr>
<th>Number</th>
<th>Isolat Nocardia sp.</th>
<th>Inhibition Zone Diameter (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Nocardia sp.1</td>
<td>22.7± 3.6</td>
</tr>
<tr>
<td>2</td>
<td>Nocardia sp. 2</td>
<td>14.7 ±3.3</td>
</tr>
<tr>
<td>3</td>
<td>Nocardia sp. 3</td>
<td>0.0± 0.0</td>
</tr>
<tr>
<td>4</td>
<td>Nocardia sp. 4</td>
<td>7.3±5.6</td>
</tr>
<tr>
<td>5</td>
<td>Nocardia sp. 5</td>
<td>0.0 ±0.0</td>
</tr>
<tr>
<td>6</td>
<td>Nocardia sp. 6</td>
<td>0.0±0.0</td>
</tr>
<tr>
<td>7</td>
<td>Control</td>
<td>0.0±0.0</td>
</tr>
</tbody>
</table>

*Control: without Nocardia sp. isolate

Minimum Inhibitory Concentration (MIC) Filtrate Nocardia sp.1 against Methicillin Resistance Staphylococcus Aureus (MRSA).
Filtrate of Nocardia sp. 1 was tested for its ability to inhibit the growth of MRSA. In concentration of 100%, Nocardia sp.1 showed a diameter of 35.2 mm wide of inhibition zone while the positive control...
using linezolid reached a diameter of 39.0 mm. *Nocardi*a sp.1 filtrate started showing its ability in 10% concentration with a diameter of 11.6 mm. Afterwards, filtrate concentration was decreased until 1% and it still showed an inhibition ability at 2% concentration.

Analysis of chemical compounds from *Nocardi*a sp.1 filtrate using Gas Chromatography Mass Spectrometry (GCMS)

Chromatogram analysis of *Nocardi*a sp.1 filtrate using Gas Chromatography Mass Spectrometry (GCMS-QP2010S SHIMADZU) displayed eight peak which can be observed in Table 2.

<table>
<thead>
<tr>
<th>No</th>
<th>Peak</th>
<th>MW (Molecular Weight)</th>
<th>FM (Formula Mass)</th>
<th>Retension Time (minute)</th>
<th>Profile of Chemical Substance base on MS database</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Peak 1</td>
<td>163</td>
<td>C_6H_C12NO</td>
<td>7,564</td>
<td>3,5-Dichloro-2-pyridone</td>
</tr>
<tr>
<td>2</td>
<td>Peak 2</td>
<td>136</td>
<td>C_6H_O</td>
<td>9,093</td>
<td>Benzeneacetic acid</td>
</tr>
<tr>
<td>3</td>
<td>Peak 3</td>
<td>240</td>
<td>C_7H_2NO</td>
<td>10,978</td>
<td>Heptadecane</td>
</tr>
<tr>
<td>4</td>
<td>Peak 4</td>
<td>240</td>
<td>C_7H_2NO</td>
<td>11,322</td>
<td>Heptadecane</td>
</tr>
<tr>
<td>5</td>
<td>Peak 5</td>
<td>206</td>
<td>C_8H_2O</td>
<td>12,703</td>
<td>Phenol. 2.4-bis(1.1-dimethylethyl)</td>
</tr>
<tr>
<td>6</td>
<td>Peak 6</td>
<td>214</td>
<td>$C_9H_2O_2$</td>
<td>12,902</td>
<td>Dodecanoic Acid Methyl Ester</td>
</tr>
<tr>
<td>7</td>
<td>Peak 7</td>
<td>270</td>
<td>$C_7H_2O_2$</td>
<td>17,412</td>
<td>Hexadecanoic Acid</td>
</tr>
<tr>
<td>8</td>
<td>Peak 8</td>
<td>652</td>
<td>$C_8H_2O_4$</td>
<td>17,733</td>
<td>1-(+)-Ascorbic Acid 2.6 Dihexadecanoate</td>
</tr>
</tbody>
</table>

DISCUSSION

In this study, *Actinomycetes* indentified as Nocardia sp. 1 strain was found to produce compound showing antagonistic effect against MRSA by inhibition zone value with diameter of 22.7 mm. This substance can be primer metabolite and secondary metabolite. According to Ambavane *et al.*\(^2\), the mechanism of secondary metabolite of *Actinomycetes* occurs by damaging cell wall and obstructing cell division. Singh *et al.*\(^15\) research explains that several *Actinomycetes* isolated from different ground are proven to impede pathogenic resistance bacteria such as *Escherichia coli* and *Vancomycin-Resistant Enterococci* with 13 – 14 mm diameter of inhibition zone. Chau *et al.*\(^2\) reported that *Actinomycetes* can inhibit *Vibrio* sp. by producing *siderophore* and extracellular enzymes.

The data obtained show *Nocardia* sp.1 filtrate has MIC level at 2% (v/v). Wardani *et al.*\(^17\) reported that MIC level from *Nocardia* sp. extracted with n-butanole, ethyl-acetate and chloroform and tested against *Microsporum gypseum* and *Staphylococcus aureus* are 64 ppm and 128 ppm respectively. El-Gendy *et al.* (2008)\(^7\) showed a result that a strain of *Nocardia* sp. ALAA2000 tested with Gram positive and Gram negative bacteria presented MIC level at 0.1 – 10 µg/mL.

The result of GCMS characterization analysis indicated several substances namely 3,5 -Dichloro-2-pyridone, Benzeneacetic acid, Heptadecane, Phenol. 2.4-bis(1.1-dimethylethyl), Dodecanoic Acid Methyl Ester, Hexadecanoic Acid Methyl Ester, 1-(+)-Ascorbic Acid 2.6 Dihexadecanoate. Benzeneatisc acid was also reported that it has been isolated from *Streptomyces galbus* TP2 and *Streptomyces humidus* and it is known as antifungal and important substance in medical field\(^13\). This Benzeneatisc acid is expected as precursor during *Penicillium chrysogenum* fermentation to produce antibiotic penicillin G\(^12\). Whereas *Dodecanoic acid methyl ester* and *hexadecanoic acid methyl ester* were common substance synthesized by *Actinomycetes*. Suzuki\(^16\) says that one indicator of *Actinomycetes* group classification is based on the existence of those substances. *Hexadecanoic acid methyl ester* were reported to be found specifically in *Nocardia levis* MK-VL-113 strain and has an antibacterial activity\(^9\).

Acknowledgement

The authors wish to extend their grateful thanks to Master of Biology, Graduate Program Udayana University, Bali and Sanggallah Public hospitals center Denpasar, Bali.
REFERENCES

