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PAPER
Hough Transform-Based Clock Skew Measurement
by Dynamically Locating the Region of Offset Majority

Komang OKA SAPUTRA†∗, Student Member, Wei-Chung TENG†a), and Takaaki NARA††, Nonmembers

SUMMARY
A network-based remote host clock skew measurement involves col-

lecting the offsets, the differences between sending and receiving times,
of packets from the host within a period of time. Although the variant
and immeasurable delay in each packet prevents the measurer from get-
ting the real clock offset, the local minimum delays and the majority of
delays delineate the clock offset shifts, and are used by existing approaches
to estimate the skew. However, events during skew measurement like time
synchronization and rerouting caused by switching network interface or
base transceiver station may break the trend into multi-segment patterns.
Although the skew in each segment is theoretically of the same value, the
skew derived from the whole offset-set usually differs with an error of un-
predictable scale. In this work, a method called dynamic region of offset
majority locating (DROML) is developed to detect multi-segment cases,
and to precisely estimate the skew. DROML is designed to work in real-
time, and it uses a modified version of the HT-based method [8] both to
measure the skew of one segment and to detect the break between adjacent
segments. In the evaluation section, the modified HT-based method is com-
pared with the original method and with a linear programming algorithm
(LPA) on accumulated-time and short-term measurement. The fluctuation
of the modified method in the short-term experiment is 0.6 ppm (parts per
million), which is obviously less than the 1.23 ppm and 1.45 ppm from the
other two methods. DROML, when estimating a four-segment case, is able
to output a skew of only 0.22 ppm error, compared with the result of the
normal case.
key words: clock skew, Hough transform, region of offset majority, time
synchronization

1. Introduction

All digital devices have an embedded internal digital clock.
Since there exists an error in the manufactured frequency to
the ideal one, the clocks tick slightly faster or slower than
physical time. This error of ticking rate is known as the
clock skew, and the ticking rate difference between two dig-
ital clocks is called the relative clock skew. When two de-
vices communicate over a network, the relative clock skew
between them may cause problems for applications that de-
mand accurate time, e.g. communication delay measure-
ments and time synchronization [1], [2]. On the other hand,
clock skew can be used to identify devices according to the
unique properties of clock skew: the measured skews are
stable in parts per million (ppm) precision over time, and

†The author is with the Department of Computer Science and
Information Engineering, National Taiwan University of Science
and Technology, Taipei 106, Taiwan.
††The author is with the Graduate School of Interdisciplinary

Information Studies, University of Tokyo, Tokyo 113-0033, Japan.
∗The author is also with the Department of Electrical and Com-

puter Engineering, Udayana University, Bali 80361, Indonesia.
a) E-mail: weichung@csie.ntust.edu.tw

DOI: 10.1587/transinf.E0.D.1
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Fig. 1 A scatter diagram of offsets, or the time differences between the
sending time and the receiving time of network packets.

the skews of different devices are generally distinguishable
at the level of ppm precision [3]–[7]. However, irrespec-
tive of the pros and cons of clock skew, all related appli-
cations share the same fundamental requisite: an accurate
clock skew measuring method.

Basically, the relative clock skew of a measurer m to
a device s can be formulated as follows. For any physical
time t, the time reported by the clock of m and by the clock
of s are denoted by Cm(t) and Cs(t), respectively. Their first
derivatives C

′

m(t) ≡ dCm(t)/dt, and C
′

s(t) ≡ dCs(t)/dt, ∀t ≥
0 are the speeds at which both clocks progress at time t. The
relative clock skew of m to s, denoted by sms(t), can then be
calculated by sms(t) = C

′

m(t) − C
′

s(t). However, as all digital
clocks tick at a constant frequency at normal temperature, it
is assumed that the relative clock skew to be measured is a
constant sms.

To measure sms over the network, m collects the send-
ing time of each network packet from s, and calculates the
time offset of each packet by subtracting the sending time
from the receiving time. The value of an offset is then the
sum of time difference, packet processing time, and packet
transmission delay. Since sms can hardly be zero, the time
difference increases or decreases steadily as time passes by.
Consequently, the offsets values change at a steady pace. As
an example, Fig. 1 shows a scatter diagram of offsets from
an experiment in Sect. 4. The increasing trend of the offsets
near the bottom of the distribution reveals that the relative

Copyright c© 200x The Institute of Electronics, Information and Communication Engineers
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skew of the measurer to the sending device is positive. On
the other hand, the outliers near the top of the distribution
illustrate how large the jitter is. A measurement conducted
in an environment with stable network delay, e.g., a wired
local area network, usually has offsets gathering around a
thick line, as in the 1st and 3rd segments shown in Fig. 2(b).
Conversely, when the network traffic is crowded, or when
the network path is long, the offsets tend to spread to a larger
area, and outliers from longer-delay packets also appear, as
shown in Fig. 1. In either case, the region of offset majority
(ROM) can be bounded by two parallel lines, like the dashed
lines in Fig. 1.

Linear regression is the fastest and simplest method of
deriving the relative skew from a collected offset-set. How-
ever, this method is vulnerable to outliers. Alternatively, the
linear programming algorithm (LPA) developed by Moon et
al. [1] is known to be robust in obtaining an accurate clock
skew, which is the slope of a line that lies below all the off-
sets, but passes through as many offsets as possible. Since
LPA uses offsets of minimal delay, which are in fact low out-
liers, to determine the line, it requires a large amount of time
to collect enough low outliers in order to stabilize its esti-
mation. Recently, Oka et al. proposed the Hough transform
(HT)-based method, which uses the gradient of the ROM’s
lower boundary line as the estimated clock skew [8]. The
HT-based approach provides the same level of precision as
LPA, but as the ROM becomes stable with just a few hun-
dred offsets, the measurement time can be reduced to less
than 10 minutes.

As the widespread use of clock skew now ranges from
cases of notebooks communicating inside a WLAN [4], [5]
to smart phone applications accessing cloud services [7],
[9], there is significant demand for an approach able to pro-
vide accurate estimations even to non-classical offset distri-
butions. A well-known non-classical case is caused by time
synchronization, e.g. network time protocol (NTP) [10],
during clock skew measurement. Since the time of a clock
jumps ahead or backward after being synchronized, the
value of the following offset jumps up or down accord-
ingly. Therefore, the continuity of offsets breaks, resulting
in two or more clusters with unpredictable scales of jumps,
as shown in Fig. 2(a). The solid line and the two dashed
lines in the figure are the results of the LPA and HT-based
method respectively. It is clear that both methods fail to give
a correct estimation. It has also been reported that this kind
of segmentation phenomena occurs when the route changes
due to, for example, the sending device switching from a
wired connection to a wireless one, or changing its mobile
network relay base station [9]. Figure 2(b) illustrates a
somewhat overdone example.

The main contribution of this work is a new method
called dynamic region of offset majority locating (DROML)
for estimating the skews of multi-segment offset-sets.
DROML uses the HT-based method both to determine the
range and to estimate the skew of each segment. When the
current ROM no longer enfolds the offset majority, i.e. a
jump is detected, DROML dynamically relocates its ROM
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Fig. 2 Multi-segment cases: a) caused by executing NTP synchroniza-
tion once during skew measurement; b) caused by switching the connecting
adapter three times during skew measurement.

to fit the offset majority of the next segment. It then merges
the clock skews of all segments into a reasonable estima-
tion. Finally, DROML is designed to adaptively estimate
the global skew such that it is able to provide real-time es-
timation. As the second contribution, the original HT-based
method [8] is also improved in order to locate the most
representative ROM for a given number-of-bounded-offsets
threshold. The improved version, wrapped as a function
called LocateROM(), is able to provide more precise esti-
mation than LPA and the original HT-based method.

The next section introduces the concept of the HT-
based clock skew measurement and how it is improved.
Next, Sect. 3, describes the design of the DROML algo-
rithm. Section 4 examines the DROML evaluation results
for both normal and multi-segment cases. Finally, Sect. 5
offers conclusions.
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2. Improving the ROM Stability of the HT-Based
Clock Skew Measurement

2.1 The HT-Based Method

The HT-based skew measurement can be summarized as fol-
lows. First, all collected offsets are mapped to image points,
as illustrated in Fig. 3. The coordinates of these points, rep-
resented by (ti, oi), are retained as the measurer’s time and
the values of offsets. Given S = {(t1, o1), . . . , (tn, on)} with
t1, . . . , tn in increasing order, the next step is to perform HT
on S . When line segments are present in the image, HT is
able to gather enough votes in some distance ρ with angle θ
which matches the gradient of a line. However, most offsets
are close to a line instead of forming one in the skew mea-
surement case. Accordingly, the rounded distances of these
offsets do not accumulate sufficiently on any specific inte-
ger to determine a line. To overcome this problem, a lower
resolution of scale ω is introduced to separate the space into
many parallel yet adjoining regions. These regions, indexed
from β0, are constructed as follows: for angle θ, the base-
line passes (t1, omin), and the normal vector of the baseline
forms an angle of θ with the t-axis. Here omin denotes the
minimum offset in the whole offset-set. The lower bound-
aries of region β1 and above then pile up on the baseline at a
regular interval of ω, as depicted in Fig. 3. All distances are
rounded accordingly to one of these regions before voting.

The next step is to choose the most appropriate region
among all candidates. To do this, the modified offset voting
method [8, Algorithm 1] scans all possible angles and has
every point vote for its region by the following formula:

β =

⌊
ρ − ρ0

ω

⌋
(1)

The voting results are stored in a three dimensional ar-
ray, Votes(θ, ω, β). Once all angles have been scanned for
a certain region thickness, the region with the most votes, if
the number exceeds the threshold k, is defined as the ROM.
The threshold k is, by default, set to 50% of n. If there is no

region fulfilling the threshold requirement, the voting pro-
cess repeats with a larger ω. This method ends when the
ROM is found.

A three-stage wrapper function [8, Algorithm 2] is fur-
ther developed to efficiently search for the correct θ inside
the range of −750.0 to 750.0 ppm in a 0.1 ppm resolution.
The detail of this function is skipped, as this part is not our
concern in this work. However, the result skew is derived
from the angle θ of the ROM by the following formula:

skew = tan (θ −
π

2
) ' (θ −

π

2
) (2)

as θ − π
2 is very close to 0.

The output of the HT-based method, the ROM, is sup-
posed to be the thinnest region which includes at least k off-
sets. In other words, the ROM is the densest zone in the
image. However, this is not always the case. Figure 3 above
depicts a counterexample. Most offsets in Fig. 3 are very
close to the boundary between β j and β j+1. If the upper
half of β j and the lower half of β j+1 are combined into one
region, it is obvious that this region qualifies as the ROM.
However, since neither β j nor β j+1 earn enough votes in this
case, the HT-based method has to try a larger ω. Although
some thicker region will eventually be assigned as the ROM,
there is no guarantee that this region of lower density will
have the same gradient as the ROM of minimal thickness.
This flaw stems from the fixed-region design inherited from
the voting process of HT. As long as the image space is di-
vided into equal-sized fixed regions, there remains a chance
that the returned region will not be the zone with the high-
est density, and, accordingly, the gradient of the ROM will
not be the best estimation for the clock skew measurement.
To solve this problem, a modified version is proposed in the
next subsection.

2.2 Finding the Most Representative ROM

In order to search for the densest region from the distances
calculated by HT, this work introduces a different problem
definition. For any region with thickness given, its location
can be determined by the distance from the baseline to its
lower boundary line along the normal vector. For example,
the lower boundary of region β j in Fig. 3 is jω above the
baseline, so any point with its distance ρ − ρ0 inside the
range [ jω, jω + ω) must fall within region β j. Now, instead
of dividing the image space into multiple equal-thickness re-
gions, this work locates the densest region floating along the
normal vector. Since the baseline is no longer necessary, it is
possible to use ρ instead of ρ− ρ0 in the floating-region ver-
sion. As the densest region must contain the largest number
of points, the problem can be redefined as follows: given a
set of distances ρ of the points, find a lower bound l such that
the range [l, l + ω] covers the largest number of distances.

In this work, a straightforward method is used to solve
this problem. First, all distances are sorted in ascending or-
der. The lower bound is then set at the smallest distance.
Once the number of bounded distances is counted, the lower
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Algorithm 1 Searching for the thinnest ROM
Require: S , θmin, θmax, θinc, ωmin, ωinc, k
Output: R
1: var R = null
2: var D = null
3: var n = S .length
4: for (ω = ωmin; R is null or R.count < k; ω = ω + ωinc) do
5: for (θ = θmin; θ ≤ θmax; θ = θ + θinc) do
6: for all (t, o) in S do
7: var ρ = t ∗ cos θ + o ∗ sin θ
8: D.insert(ρ)
9: end for

10: sort ascending(D)
11: for (i = 1, j = 2; j ≤ n; i++) do
12: var count = j − i
13: while (D( j) ≤ D(i) + ω and j ≤ n) do
14: count++

15: j++

16: end while
17: if (R is null or count > R.count) then
18: R = (θ, ω,D(i), count)
19: end if
20: end for
21: end for
22: end for

bound slides to the second smallest distance to perform the
second count. This process continues until the largest dis-
tance is bounded. Finally, the range with the highest count
is returned as the ROM.

Algorithm 1 details the pseudocode of this method.
There are 7 parameters to this algorithm, and variable R is
used to save the information of the ROM. Table 1 below
gives a list of all parameters and important variables with
short descriptions. The main body of Algorithm 1 is en-
closed by two levels of for loop. The outermost for loop
searches for the ROM of thickness ω, and the second level
for loop scans all angles inside the range [θmin, θmax]. Since
there is no upper bound to the thickness, it is guaranteed
that Algorithm 1 will always return a ROM as long as the
threshold k is not larger than n. For some given θ and ω, Al-
gorithm 1 calculates the distance ρ for every point in S and
then sorts all distances into an increasing sequence (lines 6–
10). The following for loop in lines 11–20 counts the num-
ber of covered distances inside the [D(i), D(i) + ω] range
for each iteration. Variable i in this loop is the index of the
smallest distance in the current range, and variable j points
to the next distance to be evaluated. This loop executes the
search by adopting a sliding window of length ω, so i in-
creases by 1 in each iteration. When the region has covered
the largest distance, i.e. j > n, it becomes impossible to ob-
tain a region covering more distances, so the process stops
sliding the range. Since j slides with i from 2 to n + 1, it is
clear that the time complexity of this for loop, including the
inner while loop, is O(n).

Since the only candidate region is floating instead of
fixed along the direction of the normal vector, Algorithm 1
is able to detect any qualified ROM. As the thickness ω in-
creases gradually, and Algorithm 1 stops when R covers at
least k points, the returned ROM must be of minimal thick-

Table 1 Parameters and important variables in Algorithms 1 and 2

Parameter Alg. Description
S 1, 2 Set of all points
θmin, θmax 1, 2 Lower and upper bounds of the angle range
θinc 1, 2 Angle resolution
ωmin 1, 2 Lower bound of the region thickness
ωinc 1, 2 Step size by which the thickness increases
k 1, 2 Threshold of the number of points inside the ROM
R 1, 2 Structure storing the information of the ROM
D 1 Array of the distances of all points in some angle
segmin 2 Number of points for a segment base
inc 2 Increment of sampling range and segment extension
ωmax 2 Maximum allowed thickness of the ROM
kstrict 2 Threshold bigger than k, used only for the segment base
idx 2 Starting point to search for a segment base
idx l, idx r 2 Beginning and ending indexes of a segment
Segments 2 Array of found segments

ness. Algorithm 1, when combined with the three-stage pro-
cess in [8, Algorithm 2], is able to determine the ROM pre-
cisely and thus to provide an accurate clock skew estimation.
The function LocateROM() denotes the combined process in
the subsequent sections.

3. Dynamic Region of Offset Majority Locating
(DROML) Method for Multi-segment Cases

3.1 The Segmentation of Offsets

Based on the assumption that the offsets are distributed in
one cluster, the HT-based method bounds the majority of
offsets by one ROM. However, some cases, as shown in
Fig. 2(a) and Fig. 2(b) involve baselines that shift during
the timestamp collection process. Figure 2(a) shows a typi-
cal case when NTP time synchronization occurs during the
skew measurement. As the clock time of the measurer jumps
ahead by roughly 60 ms at around the measurer’s time of
700 s, the offset jumps down accordingly, dividing the off-
sets into 2 segments. The offsets in Fig. 2(b) can be easily
divided into 4 segments. The 1st and 3rd segments show al-
most the same slope, while the 2nd and 4th segments exhibit
very similar distributions. This figure results from switch-
ing the connecting network interface of the measured device
from a wired adapter to a wireless one 3 times, in the mea-
surer’s time at around 770 s, 11540 s, and 2320 s, respec-
tively.

Although the ROM of every single segment should be
of the same gradient, the gradient of the global ROM usu-
ally differs. It is not even possible to bound the gradient er-
ror because the scale in each jump is usually unpredictable.
Therefore, a method to detect the locations of jumps is nec-
essary.

3.2 Detecting the Boundaries of Segments

People can intuitively identify a jump when looking at a
scatter diagram. However, designing an effective and effi-
cient computer algorithm for this task is a different matter.
Since a jump can only be detected if a segment is present,
the algorithm starts by determining the beginning part of the
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Algorithm 2 The DROML method
Require: S , segmin, inc, ωmin, ωmax, ωinc, kstrict , k
1: var Segments = []
2: var idx = 1
3: while (idx ≤ S.length − segmin) do
4: var R = LocateROM(S (idx · · · (idx+segmin−1)), ωmin, ωinc, kstrict)
5: if (R.ω > ωmax) then
6: idx = idx + inc
7: else
8: var (idx l, idx r) = FindSeg(S , idx, idx + segmin − 1, inc, R, k)
9: idx = idx r + 1

10: Segments.add((idx l, idx r))
11: end if
12: end while
13: var skew sum = 0
14: var o count = 0
15: for all (idx l, idx r) in Segments do
16: var R = LocateROM(S (idx l · · · idx r), ωmin, ωinc, k)
17: var weight = idx r − idx l + 1
18: skew sum = skew sum + R.skew ∗ weight
19: o count = o count + weight
20: end for
21: return skew sum/o count
22:
23: function FindSeg(S , idx l, idx r, inc, R, k)
24: loop
25: if (idx r + inc > S .length) then
26: return (idx l, idx r)
27: end if
28: var bounded = 0
29: for (i = idx r + 1; i ≤ idx r + inc; i++) do
30: var (t, o) = S (i)
31: var ρ = t ∗ cos θ + o ∗ sin θ
32: if (ρ ≥ R.lb and ρ ≤ R.lb + R.ω) then
33: bounded = bounded + 1
34: end if
35: end for
36: if (bounded ≥ k) then
37: idx r = idx r + inc
38: else
39: return (idx l, idx r)
40: end if
41: end loop
42: end function

first segment, the segment base. Although a jump always
happens at some specific location, a point-by-point scanning
approach does not work with the interference of outliers. In-
stead, a jump can always be detected when the ROM of later
offsets differs from that of earlier offsets. Therefore, an ef-
fective method is to test per batch of later offsets if the ROM
of the segment base covers the majority. After a jump is de-
tected, the algorithm repeats the first step by determining the
next segment.

In this work, a method called DROML is developed to
measure the skew of multi-segment offset-sets. DROML is
designed based on the above idea, and is able to work in real-
time. The pseudocode of DROML is shown in Algorithm 2,
and its parameters along with important variables are listed
in Table 1, with short explanations. Starting from the first
few hundred points, DROML calls LocateROM() function
and tests if the thickness of the returned ROM exceeds the
threshold ωmax. If this is the case, then the current sampled

segmin points are considered not stable enough to serve as a
segment base. DROML then slides the sampling range by
a number inc, i.e., from 1 · · · segmin to (1 + inc) · · · (segmin +

inc), and calls LocateROM() again. This step repeats until a
segment base is located.

The next step is to extend the right-hand side of the seg-
ment base until a jump is encountered. This is performed by
function FindSeg() in lines 23–42. It receives the segment
base in the form of the beginning index idx l and the ending
index idx r in S , and tries to increase idx r in the inc unit
if the later offsets pass the continuity test. A fast way to do
this is to test if there are enough points within the same dis-
tance range of the ROM for every inc points. A smaller inc
gives higher resolution boundary detection, but the number
should be kept to at least a few dozen, or a burst of out-
liers could easily cause a false positive. If the test is passed,
idx r is increased by inc and FindSeg() continues to test the
next inc points. Otherwise, it is assumed that the boundary
of this segment has been reached, and FindSeg() returns the
current (idx l, idx r) pair. DROML then starts locating the
next segment base from where a jump occurs.

The whole algorithm stops when there is no more inc
offset to slide to, or to extend.

In addition to k, another new threshold kstrict introduced
in DROML. As a larger threshold than k, it is passed to Lo-
cateROM() for finding the ROM of a segment base. This
design results from considerations for practical use. Since
LocateROM() always returns the thinnest ROM, the number
of bounded points might only marginally exceed the thresh-
old. Therefore, it is possible that some inc points, though
belonging to the same segment theoretically, marginally fail
to pass the continuity test in FindSeg() if the same thresh-
old is used. To compensate for this kind of error, a larger
threshold kstrict is passed to LocateROM() to ensure a larger
thickness, while the smaller threshold k is used in the conti-
nuity test.

As a ROM oriented approach, DROML is able to detect
a jump on-the-fly and adaptively relocate the ROM. Further-
more, since LocateROM() is able to output a stable ROM
with only a few hundred offsets [8], DROML is able to give
a reasonable skew estimation soon after the measurement
begins. Finally, the inc batch unit used in DROML might
cause the segment boundary to be located imprecisely, and
one segment might contain a few points which should be-
long to the adjacent segment. However, these noise points
are treated as outliers of this segment, and thus have no ef-
fect on the ROM locating.

3.3 Estimating the Clock Skew

The pseudocode in lines 13–21 of DROML estimates the
clock skew of the whole offsets-set by calculating the
weighted mean of the skews of all segments. The weight
of a segment here is the number of points covered in that
segment. Note that instead of using the ROM of the seg-
ment base, the ROM of the whole segment is acquired by
invoking LocateROM() again at line 16 for more precise es-
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timation. Most often, the weighted mean provides convinc-
ing estimates. However, it should not be used when there is
at least one segment whose skew differs from others over the
tolerable range, e.g. [-1, 1] ppm. Instead, the measurement
is considered invalid and a remeasurement is required.

4. Evaluation Results

Two datasets: Dataset-1 in Fig. 1 for the normal case, and
Dataset-2 in Fig. 2(b) for the multi-segment case, were used
to evaluate the performance and robustness of the proposed
methods. These datasets were timestamps sent from a note-
book of Microsoft Windows 7 OS, along with timestamps
of receiving time recorded by another PC of Ubuntu 14.04
OS. Both computers were connected to the LAN in our lab-
oratory. The 6000 timestamps in each dataset were sent at
500-ms interval. While Dataset-1 is taken from a constantly-
connected wireless measurement, Dataset-2 is recorded in
an environment with both wired and wireless network con-
nections.

It is worth nothing that offsets, when recorded in a con-
nection with heavy network traffic or a long relay route, tend
to be scattered due to higher delay and jitter. However, the
HT-based method is designed to trade off higher computa-
tion time for improved robustness in these situations [8], and
so be its extension DROML.

The first evaluation demonstrates how stable the ROMs
obtained by the modified HT-based method are. Lower
skew fluctuation means greater stability and accuracy in this
evaluation. Here, Dataset-1 was explored in two ways: 1)
accumulated-offset scheme, where estimations are gradually
conducted from 500 offsets to 6000 offsets with a 500 offset
increment; 2) separated-offset scheme, where estimations
are all conducted on small segments of 500 offsets. The
results of the modified HT-based method are then compared
with those obtained by LPA and by the original HT-based
method. For each estimation, ωmin is set to 100 µs, ωinc to
50 µs, and k to 50% of the offset count.

The next evaluation demonstrates how robust DROML
is when estimating the multi-segment case. Here, segmin is
set to 500, kstrict is 60% of the offset count, k is 50% of the
offset count, ωmax is 3 ms, and inc is 100. Even with to-
tally different distributions, both datasets are taken from the
same two devices, and thus the clock skews of both datasets
should be very similar, if not of the same value. There-
fore, the closer the estimation for Dataset-2 is to the estima-
tion for Dataset-1, the higher the accuracy of the DROML
method is.

4.1 Evaluating the Stability of ROMs

Table 2 summarizes the results of the accumulated-offset
scheme for Dataset-1. The full-size estimations (6000 off-
sets) of the three methods, 53.07 ppm by LPA, 53.21 by
the original HT-based method, and 53.1 ppm by the modi-
fied version were very close to each another, and were used
as the references. Incidentally, most measured skews range

Table 2 Results of Accumulated Estimation

Offset LPA
(ppm)

Origin HT-based method Modified method
ω

(µs)
θ − π/2
(ppm)

Skew by
LR (ppm)

ω
(µs)

θ − π/2
(ppm)

500 54.14 500 54.2 54.02 300 53.7
1000 53.67 500 53.1 53.12 300 53.5
1500 53.56 500 53.7 53.51 300 53.4
2000 53.42 400 53.7 53.52 300 53.7
2500 53.34 300 53.3 53.11 300 53.3
3000 53.30 300 53.3 53.12 300 53.3
3500 53.23 300 53.2 53.18 300 53.2
4000 53.22 300 53.2 53.26 250 53.2
4500 53.18 300 53.1 53.12 300 53.1
5000 53.13 300 53.3 53.22 250 53.1
5500 53.09 300 53.1 53.21 300 53.1
6000 53.07 400 53.2 53.21 300 53.1
Max 54.11 54.2 54.02 53.7
Min 53.07 53.1 53.11 53.1

Average 53.36 53.37 53.3 53.3
Max −Min 1.07 1.1 0.91 0.6

Table 3 Results of Separate Skew Estimation

Range of
offset

LPA
(ppm)

Origin HT-based method Modified method
ω

(µs)
θ − π/2
(ppm)

Skew by
LR (ppm)

ω
(µs)

θ − π/2
(ppm)

1–500 54.14 500 54.2 54.02 300 53.7
501–1000 53.49 400 53.1 53.12 300 53.7
1001–1500 53.58 500 54.5 54.21 300 53.5
1501–2000 53.12 400 54.3 54.31 300 53.4
2001–2500 52.79 400 53.1 53.12 300 53.3
2501–3000 52.86 300 53.3 53.29 250 53.3
3001–3500 52.71 300 53.2 53.16 300 53.2
3501–4000 52.98 300 53.2 53.21 300 53.2
4001–4500 53.14 300 53.2 53.18 250 53.2
4501–5000 52.77 300 53.1 53.12 250 53.1
5001–5500 52.69 400 53 53.08 300 53.1
5501–6000 52.77 300 53.1 53.12 300 53.1

Max 54.14 54.5 54.31 53.7
Min 52.69 53 53.08 53.1

Average 53.09 53.4 53.41 53.3
Max −Min 1.45 1.5 1.23 0.6

from -200 to 200 ppm [8]. The skew stability of the three
methods can be observed in the “Max − Min” row of Ta-
ble 2. The maximal and minimal estimation values of the
three methods occurred at the 500 and the 6000 rows in this
evaluation. The fluctuation scale of the modified HT-based
method was only 0.6 ppm, much smaller than the 1.07 ppm
of the LPA method, and the 0.91 ppm of the original HT-
based method with linear regression.

Another comparison of separate skew estimations of
500-offset batches is shown in Table 3. As expected, the
skew fluctuation of the LPA increased from 1.07 ppm to 1.45
ppm, and similarly the precision of the original HT-based
method decreased from 0.91 ppm to 1.23 ppm. Surprisingly,
the modified HT-based method maintained its precision at
0.6 ppm. It was therefore concluded that the ROM of seg-
ment base returned by function LocateROM() in Algorithm
2 is stable enough to bound the whole segment.

Finally, Tables 2 and 3 also showed that the thicknessω
of the ROM obtained by the modified HT-based method was
less than that of the original version in most cases. Given the
same threshold k, a smaller ROM has higher density, and
thus results in higher precision.
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Table 4 Result of Estimation on a Multi-segment Offset-set

Segment
number

Segment base Whole segment

Range
θ − π/2
(ppm)

ω
(µs) Range

θ − π/2
(ppm)

ω
(µs)

1 1–500 53.3 100 1–1500 53.2 100
2 1501–2000 53.8 900 1501–3000 53.4 300
3 3001–3500 53.2 100 3001–4500 53.2 100
4 4501–5000 53.7 1000 4501–5900 53.5 300

Total 1–5900 53.32

4.2 Evaluating DROML on the Multi-segment Case

Table 4 details the results when DROML was run on
Dataset-2. DROML was able to correctly detect the four
segments in the dataset. Since 25 packets were lost in
Dataset-2, the offset count was 5975. As DROML was set to
proceed per 100 offsets, the last 75 offsets were not used in
the estimation. Thus, the 4th segment ended at index 5900.
Also note that the thicknesses R.ω of the ROMs in the 1st

and 3rd segments are both 100 µs, while the thicknesses in
the 2nd and 4th segments are both 300 µs. The pattern of
thickness reflects how the offset distribution in each segment
changes in order.

The last row of Table 4 gives a global skew estimation
of 53.25 ppm. This value, compared with the 53.1 ppm in a
normal case as a reference, contains only a 0.22 ppm error.
These results show that DROML is robust in handling multi-
segment cases.

4.3 Discussion

This subsection will discuss a few subordinate issues of
DROML, completing the scope of this study.

4.3.1 Computation Time and Time Complexity

In order to compare DROML with LPA and the HT-based
methods when estimating the multi-segment case, Table 5
shows the computation times and estimation results of these
methods. The computation was executed by a PC with an
Intel Core-i7 processor and 2 GHz RAM. It is not surprising
that DROML, when handling wireless segments, took more
time than LPA. However, the Max-Min row in Table 5 shows
that DROML is far more stable when compared with LPA.
Meanwhile, due to the extra-large thicknesses of the ROMs,
the HT-based method required a much greater computation
time, with a 9.6 ppm fluctuation.

Since DROML can save the clock skew of any segment
it has collected, the computation time to generate the estima-
tion depends mainly on the offset count of the current seg-
ment when DROML runs in online mode. The most time
consuming step in Algorithm 2 is the LocateROM() func-
tion, and its time complexity can be easily derived from Al-
gorithm 1. Let n = |S |, cω = R.ω−ωmin +1

ωinc
, cθ = θmax − θmin +1

θinc
,

then the time complexity is:

O(cωcθ(an + bn log n + cn)) = O(cωn log n) (3)

Table 5 Comparison Between LPA, HT-based Method, and DROML

Measured
segment

LPA HT-based method DROML
skew
(ppm)

time
(s)

skew
(ppm)

time
(s)

ω
(µs)

skew
(ppm)

time
(s)

1 53.59 0.9 53.4 2.1 300 53.2 1.24
1 and 2 62.98 1.02 60.27 44 3200 53.3 4.58

1, 2, and 3 56.37 1.75 50.67 45 1600 53.27 5.85
1, 2, 3, and 4 56.37 2.6 56.37 60 4000 53.32 9.15
Max - Min 9.39 9.6 0.12

Table 6 Value of ω as a Function of Jump Scale

Jump scale
(ms)

θ − π/2
(ppm)

ω
(µs)

Distance
(µs) Count

6 94.5 4100 -31612 306
5.5 91.9 3700 -28992 303
5 88.7 3200 -26122 305

4.5 86.1 3050 -23518 303
4 82.6 2700 -20101 305

3.5 79.1 2550 -18165 302
3 75.4 2200 -15611 303

2.5 71.3 1950 -13281 310
2 69.6 1700 -10662 311

1.5 65.7 1350 -8142 312
1 60.2 1000 -5424 320

where a, b and c are constants; an denotes the computation
time at lines 6–9, bn log n is the sorting method time, cn is
the time required by the for loop at line 11–20. cω may in-
crease when the delay jitter is high, but the value of n can
be bounded in a few thousand, which is sufficient for the
modified HT-based method to give a stable and precise esti-
mation.

4.3.2 Online DROML

The pseudocode in Algorithm 2 is an off-line version of
DROML. An online DROML measurer should behave as
follows. First, it is idle, waiting for sufficient timestamps
of the first segment base. When there are enough times-
tamps, or offsets, DROML automatically activates to locate
the ROM of the segment base. Simultaneously, the mea-
surer keeps running the timestamp collection process. When
a segment base occurs, DROML is triggered every time
inc timestamps are received. Finally, The measurer can in-
voke DROML to assess global skew estimation at any time.
DROML, when called, uses the currently found segments to
calculate the weighted mean.

As every offset contains an error of variant value, it is
the nature of clock skew measurement to process offsets in
batches. However, the online DROML is able to feedback
the estimated skew during the measuring process with a rea-
sonably short response time, we thus argue that it works in
real-time.

4.3.3 The ωmax Threshold

An appropriate value of ωmax prevents DROML from in-
correctly recognizing an invalid range as a segment base.
Outside of high-jitter cases, it is interesting to note how a
jump may affect the ROM thickness, as shown in Fig. 2(a).
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Since LocateROM() always finds the thinnest region with
at least kstrict points inside, the longer half segment will be-
come the majority. However, LocateROM() fails to output
a valid ROM if the jump occurs around the middle of the
range.

Now consider a half-and-half case, with its first half
from the last 250 offsets of the 1st segment in Fig. 2(b), and
its second half from the beginning 250 offsets of the 2nd seg-
ment. The ROM of these 500 offsets by LocateROM() is
shown in the first row of Table 6. In this case, ωmax has to
be set as smaller than its thickness, 4100 µs, to prevent a
false negative. According to the computation results in Ta-
ble 4, the distance of the lower boundary line R.ρ of the 1st

segment is -60 µs, while R.ρ of the 2nd segment is 6021 µs.
Thus, the jump scale between these two segments is about 6
ms. Therefore, 4100 µs serves as a reference for DROML to
abandon any range containing a jump of at least 6 ms in the
middle.

By manually lowering every offset in the 2nd segment,
more ωmax references may be derived for smaller jump
scales. Table 6 gives the computation results of jump scales
from 6 ms down to 1 ms. The thickness in the 1 ms case is
the same as the thickness in the 4th segment base in Table 4,
and thus a jump of scale 1 ms or smaller is not detectable by
DROML.

5. Conclusions

This paper proposed the DROML method to extend skew
measurement to multi-segment offset-sets. DROML is re-
alized by an improved HT-based method, and can thus pro-
vide stable estimation, even for sets as small as 500 times-
tamps. As the core concept of DROML, ROM is utilized
not only for estimating the skew, but also for detecting
jumps, which are responsible for the multi-segment phe-
nomenon. As the robustness and accuracy of DROML have
been proven through experiments on both normal and multi-
segment cases, it can be concluded that DROML, an HT-
based clock skew method with abilities to provide stable
ROMs and to handle dynamically the multi-segment prob-
lem, is a complete, robust method for estimating the clock
skew of devices over network connections.
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