Welcome to JCBPSC

Journal of Chemical, Biological and Physical Sciences (JCBPSC)

Journal of Chemical, Biological and Physical Sciences (JCBPSC) is an independent, online, open access peer-reviewed non-profitable journal that publishes reviews, research articles and letters. The main object of this journal is to publish the research papers well in time preferably within one month of receiving the finally reviewed manuscripts. Manuscripts submitted to the chief editor are first reviewed by the journal's editorial board and, if necessary, by outside experts. All articles are subject to thorough, critical, objective and fair reviewed by the editors. Authors must adhere to the format described in 'Instruction to Authors' section. The Editorial board reserves the right to reject any manuscript.

Journal of Chemical, Biological and Physical Sciences (JCBPSC) is a international scholarly open access, peer-reviewed interdisciplinary quarterly online journal. It is a fully refereed journal focusing on all the branches of Chemistry including Pharmaceutical, Industrial, Environmental, Medicinal, Agriculture, Pesticides and Soil. In Biological sciences it covers Microbiology, Biotechnology, Parasitology, Biotechnology, Bioinformatics, Toxicology, Phytochemistry, Chemical Physics, Biostatistics. In physical sciences it covers Physics, Mathematics, Statistics and Engineering as well.

JCBPSC publishes original research papers in advance and dissemination of research findings in all related areas. The subject coverage by the Journal is as follows:

Section A : Chemical Sciences

Chemical Sciences This section covers all the branches of Chemistry including Biochemistry, Agricultural & Soil Chemistry, Analytical Chemistry, Polymer Chemistry, Biochemistry etc.

Section B : Biological Sciences

Biological Sciences This section is devoted to the promotion of all fields of Pharmaceutical Sciences like Pharmaceutics, Pharmaceutical & Medicinal Chemistry, Pharmacology, Pharmacognosy, Pharmaceutical Analysis, Biotechnology and all other branches of Life sciences etc.

Section C : Physical Sciences

Physical Sciences This section deals with all the branches of physical sciences like Physics, Mathematics, Statistics, Engineering, Chemical Engineering, Mechanical Engineering and other branches of Engineering etc.

Section D : Environmental Sciences

Environmental Science This section covers all the topics of Current Science, Environmental Science, including topics in scientific field, which gives the information and suggestions for technology, environment, health, science and climate etc.
Indexing

Chemical Abstract Indexing

Directory of open Access journals

Ebesco indexing

Serials Solutions

Genomics

Google Scholor

Index copernicus

New jour

Open J gate

ISI

Ulrichs Web

Cite Factor
Editor-in-chief
Prof. P. K. Sharma
Department of Chemistry
J. N. V. University, Jodhpur, (Rajasthan) India

Associate-Editor-in-chief
Dr. V. K. Sharma
Department of Chemistry
M. L. Sukhadia University, Udaipur (Rajasthan) 313002 India

Associate editor
Dr. Narendra Parashar
9, Geetanjali enclave, Malviya Nagar, New Delhi, 110017, India

Dr. (miss) D. Jain (Managing Editor)
CTAE Maharana Pratap University Of Agriculture and Technology, Udaipur(Raj.) India

Prof. Dr. AMER A. TAQA
Dental Basic Science, College of Dentistry, Mosul University; Iraq

Dr. A. Heidari
Faculty of Chemistry, California South University (CSU), Irvine, California, USA

Cristiane Bezerra da Silva
Universidade Federal do Paraná, Ciencias farmaceuticas. Avenida Prefeito Lothário Meissner, 3400 Jardim Botânico 80210170, Curitiba, PR Brasil

Dr. Dibya Prakash Rai.
Department of Physics, Pachhunga University College, Aizawl, Mizoram. India-796001

Prof. Nabeel Ali Bakr,
Department of Physics, College of Science, University of Diyala, Diyala, IRAQ

DR. KOUAKOU Egnon
Resecherche in Nutrition/Health at University Felix Houphouet Boigny Abidjan Ivory Coast, Board of Editors

Dr Rajiv Chaturvedi, (D. D.)
Tata Institute of Fundamental Research, Mumbai (Maharastra) India

Prof. Prem Raj
Department of Chemistry Lucknow University (U.P). India.

Prof. M. L. Kalra
Ex. Vice Chancellor, Kota University, Kota (Raj.), India

Prof. R. Pandey
Department of Physics M. L. Sukhadia University, Udaipur (Rajasthan) India

Dr Bharat Parashar
Department of Pharmaceutical Sciences Geetanjali Institute of Pharmacy Udaipur (Rajasthan) India

Prof. M. S. Dulawat
Department of Mathematics and statistics M. L. Sukhadia University Udaipur (Rajasthan) India
Dr Atul Tyagi
Department of Mathematics and statistics M. L. Sukhadia University Udaipur (Rajasthan) India

Dr G.S.Rathore
Department of Mathematics and statistics M. L. Sukhadia University Udaipur (Rajasthan) India

Dr Arti Prasad
Department of Microbiology M. L. Sukhadia University, Udaipur (Rajasthan) India

Dr Usha Bajpai
Department of Physics Lucknow University Lucknow (U.P.) India

Dr Sudhish Kumar
Department of Physics M. L. Sukhadia University, Udaipur (Rajasthan) India

Dr S. K. Kaushik
Department of Mathematics, K.M. College, Delhi University, Delhi

Dr Jitendra Pandey
Department of Environmental Sciences BHU, Varanasi, U. P.

Dr Pankaj Thakur
Department of Mathematics, Indus International University Bathu, Distt. Una, India (H.P)-17430

Dr Suresh Chandra Bajpai
B.S.I. Palaeobotany, Lucknow, (U.P.) India

Prof. Rita Mehra
Department of Pure & Applied Chemistry, M. D. S. University, Ajmer, Rajasthan India

Dr. V. Meena
Associate Professor, Department of Chemical Engineering, Andhra University, AndhraPradesh

Dr. Syeda Azeem Unnisa
Research Officer, Environmental Science Regional Centre for Urban and Environmental Studies Osmania University, Hyderabad, A.P., India

Dr. Abhik Chatterjee
Bioinformatics laboratory, Department of Chemistry, University College, Raiganj, Uttardinajpur, W.B., India

Dr. R. B. Srivastava
Department of Mathematics, M.L. K. P. G. College, Balrampur, U. P., India

Prof. Vijay Juyal
Department of Pharmaceutical Sciences, U.T. University, Siddhowala, Dehradun (U. K.) India

Dr. Ho Soon Min
Faculty of Applied Sciences, INTI International University, Persiaran Perdana BBN, Putra Nilai, 71800 Nilai, Negeri Sembilan, Malaysia

Dr. Sourav Bhattacharya
Department of Microbiology, Jain University, Chamarajpet, Bangalore- Karnataka, India

Dr. Idress Hamad Attitalla
Botany Department of Botany, Omar Al-Mukhtar University, Al- Bayda, Libya

Prof. Bashkim Mal Lusha
Institute of Geosciences and Energy, Water and Environment, University of Polytechnics of Tirana, Albania

Dr. Khaled Nabih Zaki Rashed
National Research Centre (NRC), Pharmacognosy Department, Pharmaceutical and Drug Industries Research Division, Dokki, Giza, Egypt

Prof. L.K. Mishra
Department of Physics, Magadh University, Bodh-Gaya, Bihar, India
Editor's of Chemical Science
Prof. S. P. Tripathi Poorvanchal University, Jaunpur, (U.P) India
Prof. Ramsajeevan Singh D. D. University, Gorakhpur, (U.P). India
Dr Jagdish Sing S.G.R. Post Graduate College, Dhobi, Jaunpur (U.P.) India
Dr N.R. Nenival University of Delhi, New Delhi
Dr Vinita Sharma J. N. V. University, Jodhpur, (Rajasthan) India
Dr P. B. Punjabi M. L. Sukhadia University, Udaipur, (Rajasthan) India
Dr Rekha Dahsora M. L. Sukhadia University, Udaipur, (Rajasthan) India
Dr Anita Mehta M. L. Sukhadia University, Udaipur, (Rajasthan) India
Dr Kiran Singh Lucknow University, Lucknow, (U.P). India
Dr Abha Misra Agra college Agra, B.R.A. University Agra (U.P.) India
Dr Ajay Sharma Government College Sirohi (Rajasthan) India
Dr Y.K. Shrivastav Government College, Chittorgarh, (Rajasthan) India
Dr S. S. Dulawat B.N. P.G. College, Udaipur, (Rajasthan) India
Dr Naveen Mittal Govt. P.G. Girls College Kota, (Rajasthan) India
Dr Shipra Bharadwaj Govt. P.G. College Kota, (Rajasthan) India
Dr B.K. Sharma Govt. P.G. College Banswara, (Rajasthan) India
Dr S. Agnesia Kanimozhi Department of Chemistry, Easa College of Engineering and Technology, Coimbatore-105, Tamil Nadu, India.
Dr Milind Baburao Ubale Postgraduate Department of Chemistry; Vasantrao Naik Mahavidyalaya, Aurangabad.
Dr. Fardad Koohyar IA University, Faculty of Science, Babol Branch, Babol, Iran
Majid Sharifi Rad Department of Range and Watershed Management, University of Zabol, Zabol, Iran.
Dr. K. R. Malode Associate Dean and Principal, College of Agriculture, Akola, India.
Dr. K. Rajaskar Department of Chemistry, Government Arts College, Arivalur-621 713, Tamil Nadu, India.
Dr. A.amer Taqa, Department Of Dental Basic Science College Of Dentistry, Iraq.
Dr. A. V. L. N. S. H. Hariharan Professor & HOD Dept.of Chemistry GITAM Institute of Technology Vishakhapatnam, India

Editor's of Biological Science:
Prof. N.C. Aery M. L. Sukhadia University, Udaipur, (Rajasthan) India
Prof. G. D. Gupta ASBASJSM College of Pharmacy, Ropar, (Punjab) India
Prof. Sukhbir Lal Khokra M. B.I University, Laddo, (H. P.)
Prof. S. C. Mehta G.R. Medical College, Gwalior (M. P.) India
Dr. Nidhi Rai M. L. Sukhadia University, Udaipur, (Rajasthan) India
Dr Chhaya Bhatnagar M. L. Sukhadia University, Udaipur, (Rajasthan) India
Dr Ragini Sharma M. L. Sukhadia University, Udaipur, (Rajasthan) India
Dr Preeti Singh M. L. Sukhadia University, Udaipur, (Rajasthan) India
Dr Ajay Sharma Bhartiya Vidhya Peeth, Pune, (Maharashtra) India
Dr Shyam Lohani Founder / Director, Noble College, Kathmandu, Nepal
Dr. K. Mrithunjaya J. S. S. College of Pharmacy, Mysore (Karnataka)
Dr K. V. Bhaskara Rao School of Biosciences and Technology, VIT University, Tamil Nadu, India
Dr B. R. Bamaniya Department of Environmental Science M. L. Sukhadia University, Udaipur (Rajasthan) India
Dr. Rekha Chauhan Department of zoology, Barkatullah University, Bhopal, India
Dr. Subha Ganguly Department of Fish Processing Technology, Faculty of Fishery Sciences, West Bengal University of Animal and Fishery Sciences, Chakgaria, Kolkata 700 094 (WB)
Dr. Mithun Bhowmick Department of Pharmaceutics, TIT-College of Pharmacy, Bhopal (M.P.) India
Prof. Seema Trivedi Department of Zoology, JN Vyas University, Jodhpur (Raj.) India
Chung-Yi Chen Dean and Professor School of Medical and Health Sciences, Fooyin University, Taiwan.
T. Leon Stephan Raj, Department of Botany, St. Xavier’s College (Autonomous), Palayamkottai-627002, Tirunelveli, Tamil Nadu, India.
Dr. C. S. Chethana, Indian Institute of Horticultural Research (IIHR), Bangalore, India
Dr. S. Laxmi Inamdar, Professor Department of Zoology, Karnatak University, Dharwad, India
Dr. Sana Sarfaraz Assistant Professor in Jinnah University, Karachi, Pakistan
Dr. S. Vijayanand, Department of Life sciences, Kristu Jayanti college (Autonomous), K. Narayanapura, Kothanur-po, Bangalore, India
Dr. Han Wei, Department of Pharmacology & Toxicology, Indiana University School of Medicine, China

Editors of Physical Science
Prof. Raj Bali Deptt. of Mathematics, University of Rajasthan Jaipur
Prof. P.R. Sharma Deptt. of Mathematics, Rajasthan University Jaipur
Dr. Jyant Singh Deptt. of Statistics, Rajasthan University Jaipur
Dr. R. P. Patidar P.G. Govt. College Ratlam M.P.
Dr. Rajendra Mathur Lachu College Jodhpur
Dr. Dharmanand Pal Department of Physics, BBD National Institute of Technology & Management, BBD University Campus, Lucknow, India
Dr. D. V. Ahire Microwave Research Laboratory, Department of Physics Z. B. Patil College, Dhule - Maharashtra, India
Dr. Rajneesh Kakar Principal, DIPS Polytechnic College, Hoshiarpur, Punjab, India
Prof. Sudhakar Singh Department of Engineering Physics, Sardar Patel College of Technology, Balaghat (M.P.), India
Dr. Laxman Mahadu Chaudhari Department of Physics, Nowrosjee Wadia College, Pune, India
Dr. Betkar Maheshwar Mallikarjun Shri Kumar Swami Mahavidyalaya, Ausa, Dist. Latur, MS, India.
Dr. K. Senthil Kannan, Professor & Head of Physics at St. Eugene University, Lusaka, Zambia
Fresh Ideas for Growing your Citations

Certificate

This is to certify that **Journal of Chemical, Biological and physical sciences** is indexed in International Scientific Indexing (ISI). The Journal has Impact Factor Value of **1.310** based on International Citation Report (ICR) for the year **2015-16**. The URL for journal on our server is http://isindexing.com/isii/journaldetails.php?id=58

________________ ____________________
Editor ICR Team
(ISI)

________________ ____________________
International Scientific Indexing
(ISI)
Vol. 7 & Issue 4 ; Section B : Biological Sciences
Date : Aug. to Oct.2017

Evaluation of Methanolic Extract of *Anogeissus Leiocarpus* Stem Bark on Castor Oil- Induced Diarrhoea in Rats

Memi G.G , D, Dahiru, Junaid, O.Q , A. Abubakar 1, Ogah J.J
JCBPS; Section B; August 2017 – October 2017, Vol. 7, No. 4; 1001-1010.
[DOI: 10.24214/jcbps.B.7.4.10101]

- Abstract

Few Simple Sequence Repeats in Human Hair Keratin Genes

Jitendra Gharu, Seema Trivedi
JCBPS; Section B; August 2017 – October 2017, Vol. 7, No. 4; 1011-1036.
[DOI: 10.24214/jcbps.B.7.4.101136]

- Abstract

Screening of Potential Heavy Metal Tolerant Phosphate Solubilizing Bacteria from the Rhizosphere of Castor (Ricinus communis) Fields

Nishat khatoon, Mazharuddin Khan, Mohamed Yahya Khan,
JCBPS; Section B; August 2017 – October 2017, Vol. 7, No. 4; 1037-1044,
[DOI: 10.24214/jcbps.B.7.4.103744]

- Abstract

Nan- Hung Chen,
JCBPS; Section B; August 2017 – October, 2017, Vol. 7, No. 4; 1145-1151,
[DOI: 10.24214/jcbps.B.7.4.114551]

- Abstract

Study of Phenotypic Correlations of Some Selected Fine Rice (Oryza Sativa L.) Genotypes

JCBPS; Section B; August 2017 – October 2017, Vol. 7, No. 4; 1152-1160.
[DOI: 10.24214/jcbps.B.7.4.115260.]

- Abstract

Some Observations on Oriental Hornet (*Vespa orientalis*) in Jodhpur (Rajasthan), India

Seema Trivedi,
JCBPS; Section B; August 2017 – October, 2017, Vol. 7, No. 4; 1161-1167.
[DOI: 10.24214/jcbps.B.7.4.116167.]

- Abstract

Anatomy and Histology of the hepatopancreas in the female of the Fish Brachydeuterus auritus Haemulidae, (Valenciennes, 1831) in Cote d’Ivoire.
Anatomie et Histologie De L’hépatopancreas Chez La Femelle Du Poisson Brachydeuterus Auritus (Haemulidae, Valenciennes, 1832) En Côte D’ivoire
Komenan Daouda KOUASSI , Marie-Anne d’ALMEIDA, Jean Jacques MIESSAN , Valentin N’DOUBA , Sylvain YAO , Goueh GNAHOUE.
JCBPS; Section B; August 2017 – October, 2017, Vol. 7, No. 4; 1168-1183.
[DOI: 10.24214/jcbps.B.7.4.116883]
• Abstract

Influence of environment on haemagglutinin activity and protein content of selected seaweeds from Gulf of Mannar Biosphere Reserve, India
Mangaiyarkarasi Ravirajan and Natesan Peyar Nadimuthu.
JCBPS; Section B; August 2017 – October, 2017, Vol. 7, No. 4; 1184-1189.
[DOI: 10.24214/jcbps.B.7.4.118489.]
• Abstract

DPPH free radical scavenging activities of leaf, stem bark,root, flower and fruit of Blighia unijugata Baker (Sapindaceae) extracts
Ajiboye, Clement Odunayo, Moronkola, Dorcas Olufunke, Adesomoju,Akinbo Akinwumi.
JCBPS; Section B; August 2017 – October, 2017, Vol. 7, No. 4; 1190-1197
[DOI: 0.24214/jcbps.B.7.4.119097.]
• Abstract

Comparative Evaluation of Inter Surface Gap of Three Composite Restorative Materials-Sem Analysis
Dr. Jesudass Govada, Dr. Sridhar Reddy Erugula, Dr. Prasan Kumar, Dr.B. Rajendra Prasad, K.T. S. S. Rajajee, Rosaihot Kotikalaludi.
JCBPS; Section B; August 2017 – October, 2017, Vol. 7, No. 4; 1198-1204.
[DOI: 0.24214/jcbps.B.7.4.119804.]
• Abstract

Assessment of Beneficial Effect of Propolis against Cadmium Induced Toxicity and Oxidative Stress in Rats
Gihan M. Hammoud, Asmaa A. Salem and Khaled M. EL-Sawy.
JCBPS; Section B; August 2017 – October, 2017, Vol. 7, No. 4; 1205-1224,
[DOI: 0.24214/jcbps.B.7.4.120524.]
• Abstract

Anatomy and Histology of the hepatopancreas among the male fish, Chloroscombrus chrysurus of Linnaeus, 1766 (Carangidae) in Cote d’Ivoire
Jean-Jacques MIESSAN, Marie-Anne D’ALMEIDA, Komenan Daouda KOUASSI, Sylvain YAO, Valentin N’DOUBA, Goueh GNAHOUE.
JCBPS; Section B; August 2017 – October, 2017, Vol. 7, No. 4; 1225-1238.
[DOI: 10.24214/jcbps.B.7.4.122538.]
Anatomie et Histologie de L’hépatopancréas Chez Le Mâle du Poisson, *Chloroscombrus chrysurus* de Linnaeus, 1766 (Carangidae) en Côte D’ivoire
Jean-Jacques MIESSAN, Marie-Anne D’ALMEIDA, Komenan Daouda KOUASSI, Sylvain YAO, Valentin N’DOUBA, Goueh GNAHOUE,
JCBPS; Section B; August 2017 – October, 2017, Vol. 7, No. 4; 1225-1238,
[DOI: 10.24214/jcbps.B.7.4.122538.]

- **Abstract**

Synthesis of Copper Nanoparticles, Antibacterial Screening and Larvicidal Activity of Phyllanthus amarus
JCBPS; Section B; August 2017 – October, 2017, Vol. 7, No. 4; 1239-1247.
[DOI: 10.24214/jcbps.B.7.4.123947.]

- **Abstract**

In vitro Phytochemical and antimicrobial Activity of Walnut (Juglansregia L.) Husk
Abdul rehman, Omm-e-hany, Asia Neelam, Zaira Tariq and Aamir Alamgir,
JCBPS; Section B; August 2017 – October, 2017, Vol. 7, No. 4; 1248-1256
[DOI: 10.24214/jcbps.B.7.4.14856.]

- **Abstract**

Studies on the Production and Optimization of Pectinase by Aspergillus Niger NCIM 616 using Mixed Substrate under Solid State Fermentation
B.Tejaswi and K. Jaya Raju,
JCBPS; Section B; August 2017 – October, 2017, Vol. 7, No. 4; 1257-1268.
[DOI: 10.24214/jcbps.B.7.4.125768.]

- **Abstract**

Copper-Induced changes in the expression of Dihydroflavonol-4-reductase (DFR) and its role in anthocyanin production in Plantago ovata Forsk.
Pratik Talukder, Sarmistha Sen Raychaudhuri,
JCBPS; Section B; August 2017 – October, 2017, Vol. 7, No. 4; 1269.-1279.
[DOI: 10.24214/jcbps.B.7.4.126979.]

- **Abstract**

Blood chemistry profile of Bali cattle fed silage rice straw and biosupplement of selected rumen and termites lignocellulolytic bacteria consortium
Partama, I. B. G., I M. Mudita, I G. L. O. Cakra, A. A. P. P. Wibawa, T. I. Putri,
JCBPS; Section B; August 2017 – October, 2017, Vol. 7, No. 4; 1280-1288,
[DOI: 10.24214/jcbps.B.7.4.128088.]

- **Abstract**

Quantification of vitamin C in leaves and fruit pulp of Adansonia digitata L.
Samatha Talari and RamaSwamy Nanna,
JCBPS; Section B; August 2017 – October, 2017, Vol. 7, No. 4; 1289-1293.
[DOI: 10.24214/jcbps.B.7.4.128993.]

- **Abstract**
Blood chemistry profile of Bali cattle fed silage rice straw and biosupplement of selected rumen and termites lignocellulolytic bacteria consortium

Faculty of Animal Husbandry Udayana University, Denpasar, Indonesia

Received: 10 September 2017; Revised: 22 September 2017; Accepted: 28 September 2017

Abstract: The study aimed to determine blood chemistry profile of Bali cattle fed rice straw and biosupplement fermented by selected (superior) rumen and termites lignocellulolytic bacteria inoculant has been carried out in the Simantri Farmers Group “Winangun Kertih” Banjarangkan Village, Klungkung District, Bali Province. Twelve bali cattle were used in this experiment with Randomized Block Designed four treatments and three blocks. The first treatment was bali cattle fed biosupplement without fermented inoculant bacteria consortium (SB0), while the other three treatments were fed biosupplements fermented by selected 1 (BR23T14), selected 2 (BR24T13), and selected 3 (BR34T12) lignocellulolytic bacteria inoculant. Basal feed for all bali cattle was rice straw fermented by the best inoculant formula of lignocellulolytic bacteria inoculant coded BR23T14. The results showed that fed biosupplements fermented selected 1 and 2 inoculant formula of lignocellulolytic bacteria consortium (treatments SB1 and SB2) increased 29.80% and 21.38%; 52.09% and 36.08% respectively for totally cholesterol and High Density Lipoprotein/HDL blood concentration of bali cattle compared with SB0. The blood glucose of bali cattle significantly increased by 26.11% on treatment SB1, whereas given SB2 and SB3 were not significant different compared with SB0. Meanwhile in variable blood urea, triglycerides, and Low Density Lipoprotein/LDL, all treatments were not significant different (P>0.05). It was concluded that given biosupplement fermented selected inoculant formula of lignocellulolytic bacteria consortium of bali cattle rumen and termites can increasing blood glucose, totally cholesterol and HDL concentration of bali cattle.
INTRODUCTION

Optimise the nutrients metabolism presented at blood chemistry profile on degrading fibrous feed such as agriculture waste is one important step in optimizing the advantages of Bali cattle as a source of the best meat in the tropics are able to utilize lower quality feedstuffs. This is important because the national policy on procurement of ruminant diets in an effort to achieve self-sufficiency in beef cattle is focused on the utilization of agricultural waste\(^1\). Blood chemistry profile such as glucose, urea and blood lipids were reflection of the supply of nutrients and nutrients metabolism of livestock in producing quality meat.

Blood glucose concentration are a reflection of the main results of carbohydrate metabolism that circulate along the blood\(^2\) and is an important energy source in the maintenance for animals\(^3\). Harper\(^4\) states that the range of normal glucose levels in ruminant range 70-120 mg/dl. Levels of blood urea is a reflection of the body's blood urea cycle in ruminants and is the result of protein metabolism by rumen microbial activity against protein or non-protein nitrogen feed\(^4\). Hungate\(^6\) states that the range of normal blood urea concentration of cattle is 26.6 to 56.7 mg/dl. Wibawa et al.\(^7\) (2013) showed that the ration-based agricultural waste without fermentation would lower glucose levels by 13.58% -15.43% (53.00 mg/dl vs 61.33-62.67 mg/dl) and blood urea Bali cattle decreased 10:16% -13.17% (40.40 mg/dl vs. 44.97 - 46.53 mg/dl) compared with fermented feed. Blood lipids, especially cholesterol, triglycerides, HDL and LDL are a reflection of the supply of nutrients to livestock\(^8\). Lipid compounds circulating in the blood is a useful for the body as an energy source\(^9\).

Bali cattle have the ability to use various types of low-quality feedstuffs including agricultural waste and has responded positively to the improvement of feed by increasing the rate of body weight gain and feed utilization efficiency\(^10\). However, the utilization of agricultural waste as animal feed in need of treatment technologies, considering the rich wastes lignocellulose compounds are difficult to digest by cattle. This is supported by Mudita et al.\(^11,12\) that the use of agricultural waste as feed without the application of technology can reduce productivity and business efficiency Bali cattle and goat livestock. Fermentation and supplementation technology was allegedly able to overcome these problems. Application the selected inoculant formula of rumen and termites lignocellulolytic bacteria as starter fermentation process will be increasing quality of basal or supplement feed based on agriculture waste\(^14\).

The first research periods by Partama et al.\(^15\) showed that has selected three (3) superior bacteria consortium inoculant formula from bali cattle rumen and termites bacteria were formula coded BR\(_{23}T\(_{14}\) , BR\(_{24}T\(_{13}\) dan BR\(_{34}T\(_{12}\) having high quality and eflectivity as starter fermentation agriculture waste for animal feed. Those research showed lignocellulolytic bacteria consortium inoculant coded BR\(_{23}T\(_{14}\); BR\(_{24}T\(_{13}\) and BR\(_{34}T\(_{12}\) were third inoculant had higher contents of soluble prtein, phosphor/P, calcium/Ca, zincum/Zn, sulfur/S, amount of microbes, substrates degradation ability, and enzyme activity compared with others inoculant. That inocculant also has increase quality and in-vitro digestibility of rice straw. Based on that research use its bacteria consortium inoculant on in-vivo research for development bali cattle livestock necessary for application. The research was conducted to determine the effect of biosuplemen of rumen bacterial consortium
MATERIALS AND METHODS

Location, Animals and Experimental Design: A research has been carried out at fedlot Group of Integrated Farming System “Simantri” namely Winangun Kertih, Banjarangkan Village, Klungkung Regency used twelve (12) Bali cattle mean body weight 121.72 ± 13.01 kg. They were kept in feedlot pens (individual concrete pens) on site for duration of the study. This experiment used a Randomized Block Design with four treatments and three block as replicated. The treatment were as follows:

SB₀ = bali cattle fed biosuplement fermented without selected inoculant formula
SB₁ = bali cattle fed biosuplement fermented selected 1 (BR₂₅T₁₄) inoculant formula
SB₂ = bali cattle fed biosuplement fermented selected 2 (BR₂₃T₁₃) inoculant formula
SB₃ = bali cattle fed biosuplement fermented selected 3 (BR₃₄T₁₂) inoculant formula

Selected Lignocellulolytic Bacteria Inoculant: Bacteria inoculant utilized in this study were selected 1,2, and 3 coded BR₂₅T₁₄, BR₂₃T₁₃, and BR₃₄T₁₂ of lignocellulolytic bacteria consortium inoculant which result research of the First Year research of Partama et al.¹³ formulated by superior bacteria of bali cattle rumen and termites result research of Mudita et al.¹⁴. Bacteria consortium inoculants were produced by inoculating 1% a combination of bacterial culture (according to treatments) on the inoculant medium aseptically under anaerobic conditions. The formula of selected inoculant are presented in Table 1.

<table>
<thead>
<tr>
<th>Selected Bacteria Inoculant</th>
<th>Inoculant Medium (ml)</th>
<th>Superior Bacteria Isolates Culture from Bali Cattle Rumen (BR) (ml)</th>
<th>Superior Bacteria Isolates Culture from Termites (BT) (ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BR₂₅T₁₄</td>
<td>990</td>
<td>BR₁ = 9.5, BR₂ = 9.5, BR₃ = 9.5, BR₄ = 9.5</td>
<td>BT₁ = 9.5, BT₂ = 9.5, BT₃ = 9.5, BT₄ = 9.5</td>
</tr>
<tr>
<td>BR₂₃T₁₃</td>
<td>990</td>
<td>BR₁ = 9.5, BR₂ = 9.5, BR₃ = 9.5, BR₄ = 9.5</td>
<td>BT₁ = 9.5, BT₂ = 9.5, BT₃ = 9.5, BT₄ = 9.5</td>
</tr>
<tr>
<td>BR₃₄T₁₂</td>
<td>990</td>
<td>BR₁ = 9.5, BR₂ = 9.5, BR₃ = 9.5, BR₄ = 9.5</td>
<td>BT₁ = 9.5, BT₂ = 9.5, BT₃ = 9.5, BT₄ = 9.5</td>
</tr>
</tbody>
</table>

Medium inoculant is made from a combination of natural ingredients and chemical materials such as Table 2. Mixing medium using vortex for 30 minutes at 80-100°C. Medium inoculant that has been mixed homogeneously subsequently sterilized in an autoclave for 15 minutes T 121°C. After the medium inoculant begin cooling (T ± 40°C), medium ready to be used for the production inoculant. Its inoculant application for production of selected biosupplement (following treatment) and especially inoculant coded BR₂₅T₁₄ also application for fermented rice straw were basal feed for all treatments.
Tabel 2: Composition of Inoculant Medium (on 1 liter)

<table>
<thead>
<tr>
<th>No</th>
<th>Material</th>
<th>Composition</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Thioglicollate Medium (g)</td>
<td>0.1</td>
</tr>
<tr>
<td>2</td>
<td>Sugarcane (ml)</td>
<td>50</td>
</tr>
<tr>
<td>3</td>
<td>Urea (g)</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>Tannic Acid (g)</td>
<td>0.025</td>
</tr>
<tr>
<td>5</td>
<td>CMC (g)</td>
<td>0.025</td>
</tr>
<tr>
<td>6</td>
<td>Xylan (g)</td>
<td>0.025</td>
</tr>
<tr>
<td>7</td>
<td>Rice Straw (g)</td>
<td>0.25</td>
</tr>
<tr>
<td>8</td>
<td>Rice Brand (g)</td>
<td>0.25</td>
</tr>
<tr>
<td>9</td>
<td>Cassava</td>
<td>0.25</td>
</tr>
<tr>
<td>10</td>
<td>Multy vitamin-mineral “Pignox” (g)</td>
<td>0.15</td>
</tr>
<tr>
<td>11</td>
<td>Water</td>
<td>until volume 1 liter</td>
</tr>
</tbody>
</table>

Biosupplement: In this study, produced 4 biosupplements consist of 3 bacteria consortium biosplanen namely SB₁, SB₂, SB₃ (biosupplement produced by selected 1; 2; 3 of bacteria inoculant were BR_{23T14}, BR_{24T13}, and BR_{34T12}) and 1 biosuplemen fermented by mollases/sugarcane solution without bacteria inoculant (1 liter molasses for 80 liter water) with coded SB₀. Composition material feedstuffs of Basal biosupplement were produced all biosupplement show at Table 3.

Production of biosupplement was done by the fermentation method. The fermentation process is done by every 1 kg (DM) products supplement fermented using a inoculant solution containing 50 ml of inoculant (according to treatment), 50 ml of sugarcane and 900 ml of water (especially for SB₀, the inoculant change with water). Then mixed until homogeneous and immediately put in a plastic container lid tightly and filled to the brim. Then incubated anaerobically for 1 week. Furthermore biosupplement were pelleting and oven-dried at a temperature of 39 - 42 °C until the moisture content of 20-25% of products (usually for ± 3 days). Once completed, the biosupplement ready to be used for further research activities. The nutrients content and population microbial presented at Table 4 and 5.

Table 3: Composition Material of Basal Biosupplement

<table>
<thead>
<tr>
<th>Material</th>
<th>Composition (% DM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rumen waste content</td>
<td>40</td>
</tr>
<tr>
<td>Sugarcane/Molases</td>
<td>5</td>
</tr>
<tr>
<td>Rice Bran</td>
<td>20</td>
</tr>
<tr>
<td>Corn bran</td>
<td>15</td>
</tr>
<tr>
<td>Coconut Meal</td>
<td>10</td>
</tr>
<tr>
<td>Tapioca Meal</td>
<td>5</td>
</tr>
<tr>
<td>Soy Bean</td>
<td>4</td>
</tr>
<tr>
<td>Salt / NaCl</td>
<td>0,5</td>
</tr>
<tr>
<td>limestone (CaCO<sub>3</sub>)</td>
<td>0,4</td>
</tr>
<tr>
<td>Multyvitamin-minerals “Pignox"</td>
<td>0,1</td>
</tr>
<tr>
<td>Total</td>
<td>100</td>
</tr>
</tbody>
</table>
Table 4: Nutrients Content of Biosupplement

<table>
<thead>
<tr>
<th>Nutrients Contents</th>
<th>SB₀</th>
<th>SB₁</th>
<th>SB₂</th>
<th>SB₃</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dry Matter/DM (% fresh basis)</td>
<td>59,403</td>
<td>59,492</td>
<td>59,485</td>
<td>59,504</td>
</tr>
<tr>
<td>Organic Matter/OM (%)</td>
<td>85,778</td>
<td>88,506</td>
<td>88,346</td>
<td>88,678</td>
</tr>
<tr>
<td>Crude Fibre/CF (%)</td>
<td>14,789</td>
<td>10,971</td>
<td>11,265</td>
<td>11,580</td>
</tr>
<tr>
<td>Crude Protein/CP (%)</td>
<td>11,807</td>
<td>14,234</td>
<td>14,084</td>
<td>13,990</td>
</tr>
</tbody>
</table>

Notes: Analysis by Laboratory of Animal Feed and Nutrition, Faculty of Animal Husbandry, Udayana University.

Table 5: Microbial Population of Biosupplement

<table>
<thead>
<tr>
<th>Microbes</th>
<th>SB₀</th>
<th>SB₁</th>
<th>SB₂</th>
<th>SB₃</th>
</tr>
</thead>
<tbody>
<tr>
<td>Totally of Bacteria (x 10⁷ CFU/g)</td>
<td>0,43</td>
<td>19,40</td>
<td>19,27</td>
<td>18,73</td>
</tr>
<tr>
<td>Lignocellulolytic Bacteria (x 10⁷ CFU/g)</td>
<td>0,28</td>
<td>10,53</td>
<td>10,53</td>
<td>9,53</td>
</tr>
<tr>
<td>Lactic Acid Bacteria (x 10⁷ CFU/g)</td>
<td>0,16</td>
<td>21,47</td>
<td>21,07</td>
<td>20,93</td>
</tr>
<tr>
<td>Totally of Fungi (x 10⁵ CFU/g)</td>
<td>0,73</td>
<td>7,87</td>
<td>7,80</td>
<td>7,60</td>
</tr>
<tr>
<td>Cellulolitic Fungi (x 10⁵ CFU/g)</td>
<td>0,53</td>
<td>5,33</td>
<td>5,20</td>
<td>5,20</td>
</tr>
</tbody>
</table>

Notes: Analysis by Laboratory of Animal Feed and Nutrition, Faculty of Animal Husbandry, Udayana University.

Basal Feed: The basal feed used in this study for all bali cattle animal research was rice straw fermented by selected 1 of lignocellulolytic bacteria inoculant (BR₂₃ T₁₄). The fermentation process is done by every 100 kg (DM) rice straw fermented using 80 liter inoculant solution containing 1 liter of inoculant (BR₂₃ T₁₄), 1 liter of sugarcane and 78 liter of water and incubated anaerobically for 1 week. Basal feed provided ad libitum. Nutrients content and metabolic product of basal feed show at Table 6.

Table 6: Nutrients Content of Basal Feed of Rice Straw Fermented BR₂₃ T₁₄

<table>
<thead>
<tr>
<th>Nutrients</th>
<th>Content</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dry Matter/DM (% fresh basis)</td>
<td>21,514</td>
</tr>
<tr>
<td>Organic Matter/OM (%)</td>
<td>80,0708</td>
</tr>
<tr>
<td>Crude Fiber/CF (%)</td>
<td>26,7500</td>
</tr>
<tr>
<td>Crude Protein/CP (%)</td>
<td>7,8800</td>
</tr>
<tr>
<td>Acidity/pH</td>
<td>4,1700</td>
</tr>
<tr>
<td>N-NH₃ (mmol)</td>
<td>8,7967</td>
</tr>
<tr>
<td>Totally VFA (mmol)</td>
<td>108,9668</td>
</tr>
</tbody>
</table>

Variables Observations: The parameters observed in this study consists of the blood glucose, blood uric acid, totally cholesterol, triglycerides, High Density Lipoprotein/HDL and Low Density Lipoprotein/LDL blood
Data Analysis: Data were analyzed by analysis of variance/anova, if there are significant differences \((P \leq 0.05) \), followed by the analysis of Honestly Significant Difference test (HSD-test) \(^{15}\).

RESULTS AND DISCUSSION

The results showed that administration of biosupplement 1 (SB\(_1\)/biosupplement fermented by BR\(_{23}\)T\(_{14}\)), biosupplement 2 (SB\(_2\)/biosupplement fermented by BR\(_{24}\)T\(_{13}\)), biosupplement 3 (SB\(_3\)/biosupplement fermented by BR\(_{34}\)T\(_{12}\)) in Bali cattle fed basal rice straw fermented has increase the profile of the blood chemistry of Bali cattle, especially glucose, total cholesterol and HDL blood, while on variable of blood urea, blood triglycerides and LDL giving selected biosupplement no significantly (Table 7).

Table 7: Blood chemistry profiles of Bali cattle fed rice straw fermented and biosupplement research

<table>
<thead>
<tr>
<th>No</th>
<th>Variables</th>
<th>Treatments(^1)</th>
<th>SEM(^3)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>SB(_0)</td>
<td>SB(_1)</td>
</tr>
<tr>
<td>1</td>
<td>Blood Glucose (mg/dl)</td>
<td>79.58a(^2)</td>
<td>100.36b</td>
</tr>
<tr>
<td>2</td>
<td>Blood Urea (mg/dL)</td>
<td>49.98a</td>
<td>56.90a</td>
</tr>
<tr>
<td>3</td>
<td>Blood Total cholesterol (mg/dl)</td>
<td>141.15a</td>
<td>183.21b</td>
</tr>
<tr>
<td>4</td>
<td>Blood Triglycerides (mg/dl)</td>
<td>27.01a</td>
<td>41.79a</td>
</tr>
<tr>
<td>5</td>
<td>HDL (mg/dl)</td>
<td>105.38a</td>
<td>160.28c</td>
</tr>
<tr>
<td>6</td>
<td>LDL (mg/dl)</td>
<td>30.37a</td>
<td>14.58a</td>
</tr>
</tbody>
</table>

Note: \(^{1}\) The Treatmen SB\(_0\)= bali cattle was given rice straw fermented and biosupplement without lignocellulolytic bacteria consortium,SB\(_1\)= bali cattle was given rice straw fermented and biosupplement selected 1 (SBR\(_{23}\)T\(_{14}\)), SB\(_2\)= bali cattle was given rice straw fermented and biosupplement selected 2 (SBR\(_{24}\)T\(_{13}\)), SB\(_3\)= bali cattle was given rice straw fermented and biosupplement selected 3 (SBR\(_{34}\)T\(_{12}\)). \(^{2}\) The same letter in same row is not significantly difference \((P>0.05) \), \(^{3}\) SEM = Standard Error of the Treatment Means.

Blood glucose concentrations are a reflection of the energy supply for the cattle especially on the given selected 1 biosupplement (SB\(_1\)) able to significantly increase 26.11% of blood glucose concentration compared with bali cattle given biosupplement control (SB\(_0\) = biosupplement without selected bacteria inoculant) with the blood glucose concentration 79.58 mg/dl, but no significant with treatment SB\(_2\) and SB\(_3\) (Table 7). In general the provision of all treatments resulted in blood glucose concentration within the normal range\(^4\) of 70-120 mg/dl.

Resulting in blood glucose concentrations were higher in bali cattle given selected biosupplement bacteria consortium bali from bali cattle rumen and termites show high bacteria consortium role in supplying nutrients to livestock in response to the high quality of nutrients produced by the administration of elected biosupplement so showed on Table 4 and 5. High of glucose blood concentration by SB\(_1\) so as respons increasing nutrients consumption and efficiency (lower feed consumption ration/FCR) from bali cattle given selected biosupplement as showed on Table 8 \(^{16}\).
Tabel 8: Performance of bali cattle given basal feed with biosupplements research

<table>
<thead>
<tr>
<th>Variables</th>
<th>Treatments</th>
<th>SEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Daily Body Weight Gain (kg/d)</td>
<td>SB0 0.49a</td>
<td>SB1 0.66b</td>
</tr>
<tr>
<td>Rice Straw Fermented DM Consumption (kg/d)</td>
<td>SB0 2.08a</td>
<td>SB1 2.39b</td>
</tr>
<tr>
<td>Biosupplement DM Consumption (kg/d)</td>
<td>SB0 1.39a</td>
<td>SB1 1.48a</td>
</tr>
<tr>
<td>Totally Feed DM Consumption (kg/d)</td>
<td>SB0 3.47a</td>
<td>SB1 3.88a</td>
</tr>
<tr>
<td>Rice Straw Fermented OM Consumption (kg/d)</td>
<td>SB0 1.67a</td>
<td>SB1 1.92b</td>
</tr>
<tr>
<td>Biosupplement OM Consumption (kg/d)</td>
<td>SB0 1.19a</td>
<td>SB1 1.31a</td>
</tr>
<tr>
<td>Totally Feed OM Consumption (kg/d)</td>
<td>SB0 2.86a</td>
<td>SB1 3.23b</td>
</tr>
<tr>
<td>Rice Straw Fermented CF Consumption (kg/d)</td>
<td>SB0 0.62a</td>
<td>SB1 0.72b</td>
</tr>
<tr>
<td>Biosupplement CF Consumption (kg/d)</td>
<td>SB0 0.206b</td>
<td>SB1 0.163a</td>
</tr>
<tr>
<td>Totally Feed CF Consumption (kg/d)</td>
<td>SB0 0.828a</td>
<td>SB1 0.878a</td>
</tr>
<tr>
<td>Rice Straw Fermented CP Consumption (kg/d)</td>
<td>SB0 0.142a</td>
<td>SB1 0.163b</td>
</tr>
<tr>
<td>Biosupplement CP Consumption (kg/d)</td>
<td>SB0 0.164a</td>
<td>SB1 0.341b</td>
</tr>
<tr>
<td>Totally Feed CP Consumption (kg/d)</td>
<td>SB0 0.306a</td>
<td>SB1 0.504b</td>
</tr>
<tr>
<td>Feed Conversion Ratio/FCR</td>
<td>SB0 7.12a</td>
<td>SB1 5.91a</td>
</tr>
</tbody>
</table>

Resources: Partama et al. (2016)

Notes: DM=Dry Matter, OM=Organic Matter, CF=Crude Fiber, CP=Crude Protein

1) The Treatmen SB0 = bali cattle was given rice straw fermented and biosuplement without lignocellulolytic bacteria consortium, SB1 = bali cattle was given rice straw fermented and biosuplement selected 1 (SBR2T1), SB2 = bali cattle was given rice straw fermented and biosuplement selected 2 (SBR2T1), SB3 = bali cattle was given rice straw fermented and biosuplement selected 3 (SBR2T1).

2) The same letter in same row is not significantly different (P>0.05).

3) SEM = Standard Error of the Treatment Means.

Bali cattle blood urea concentration by the four treatments showed no significant results (P>0.05) and were within the normal range (49.98 to 56.90 mg/dl). Hungate stated that normal blood urea on cattle ranged from 26.6 to 56.7 mg/dl. In this study, administration biosupplement bacteria consortium produces blood urea concentration quantitatively higher than given biosupplement control (no bacteria consortium/treatment SB0) is 53.44 - 56.90 mg/dl vs. 49.98 mg/dl, but in statistically not significant.

Giving biosupplement selected especially SB1 and SB2 capable of producing concentrations of totally cholesterol and HDL were higher (P<0.05) than the feeding biosuplemen control (SB0), respectively from 171.34 to 183.21 mg/dl vs. 141.15 mg/dl; 143.40 to 160.28 mg/dl vs. 105.38 mg/dl (Table 7). Generates high cholesterol levels in the administration of the biosuplemen bacteria consortium Bali cattle rumen and termites showed the effectiveness of high biosupplement in optimizing the utilization of feed by livestock as showed lower feed conversion ratio (FCR) (Table 7). Besides that, the superior lignocellulolytic bacteria consortium will assist the process of metabolism in the body of Bali cattle for the better. It produces high levels of HDL are also an indication of the health of livestock body so well that the resulting meat is also high quality.

Trigleserida and LDL blood concentration as a reflection of the content and quality of body fat in all treatments (SB0, SB1, SB2, SB3) has a value not significant (P>0.05) with each level from 27.01 to 41.79 mg/dl and 14.58 to 30.37 mg/dl. Trigleserida and LDL blood concentration is low and not significant due to the possibility of all the feed is fermented fodder that provided organic acids that participate limiting production of triglycerides and LDL. It also indicates the
metabolic processes of all livestock is going well so that the quality of products (meat) produced is also high.

Blood HDL concentrations in this study is higher than the blood LDL. This condition is a positive thing because of the increased blood HDL will improve the quality of meat and had no negative effect on consumers. Anderson17 stated that high levels of HDL are important because HDL also acts as an antioxidant and anticoagulant to prevent the occurrence of various diseases in the body of livestock. But on the contrary if there is a decrease in HDL cholesterol are at risk for the occurrence of hardening of the arteries (atherosclerosis) and cardiovascular disease for consumers who consume the meat of cattle18,19.

CONCLUSION

Based on the results of this study concluded that administration biosupplement bacterial consortium can improve blood chemistry profile, especially glucose, totally cholesterol and HDL blood, but had no effect on levels of urea, triglyceride and LDL blood.

ACKNOWLEDGEMENT

The authors acknowledge to the Directorate General of Higher Education, National Education Department, Republic of Indonesia and Udayana University through Competitive Research Grant 2016 for fund support in this experimentation. Thanks are also due to the Laboratory of feed and nutrition animal, Faculty of Animal Husbandry Udayana University and Analytic Laboratory Udayana University for assistance in laboratory analysis.

REFERENCES

12. I M. Mudita, I W. Wirawan, A.A. Dan P.P. Wibawa, Supplementation bio-multinutrients were produced by rumen liquid on increasing quality of ration silage based on local resources waste. Researchh Grant. Udayana University, Denpasar, Indonesia,2010

Corresponding author: I M. Mudita,
Faculty of Animal Husbandry Udayana University, Denpasar, Indonesia

Online publication Date: 28.9.2017