Indexed by
Currently Journal of Applied Horticulture is included in the following Abstracting Services:
COORDINATING EDITORS AND REFEREES

- Editorial Advisory Committee
- Become a Country Editor
- Call for Nomination of Country Editors

The Editorial Board consists of Editors from different countries and a group of Technical Editors, competent research scientists in their respective fields.

About seven years ago, an initiative was started to expand the scope and geographic representation of the Editorial Board of Journal of Applied Horticulture. A glance of Members of Editorial Advisory Panel will reveal that this initiative has indeed been very successful, with over twelve countries represented in a board of members. However, nominating and electing members alone is not enough. The goal of such measures is also to attract both authors and readers from a wider and more diverse scientific community.

Journal of Applied Horticulture (1999-2013) now has a more diverse and international representation on the editorial board, more fully reflecting the horticultural research agenda internationally.

Members of the Editorial Advisory Panel and Country Coordinating Editors

- Ákos Máthé, Department of Botany, Faculty of Agriculture and Food Science, University of West Hungary, Mosonmagyaróvár, Hungary
- Alberto C.Q. Pinto, EMBRAPA-CPAC, Planaltina – BF, Brazil
- Alberto Pardossi, Dip. Biologia delle Piante Agrarie, University of Pisa, Italy
- Alex-Alan Furtado de Almeida, Brazil
- Amanollah Javanshah, Director of Iran Pistachio Research Institute, Rafsanjan, Iran
- Amos Mizraich Institute of Agricultural Engineering, The Volcani Center, ARO, Israel
- Atilla Eris, of Horticulture, Uludag University, Faculty of Agriculture, Department of Horticulture, 16059 Bursa, Turkey
- B.Sasikumar, Indian Institute of Spices Research, Calicut – 673 012, Kerala,
- Bngru Huang, Department of Plant Biology and Pathology, Rutgers University, USA
- Bletos Fotios, National Agricultural Research Foundation (NAGREF), Agricultural Research Center of Macedonia and Thrace, Greece
- C.P.A.Iyer, Ex Director, Central Institute of Horticulture for Northern Plains, Lucknow, India
- Cengiz Kaya, Turkey
- Chang-Hung Chou, National Pingtung University of Science and Technology, Taiwan
- Daniel Valero Garrido, Ctra. Beniel, Orihuela, Alicante, Spain
- David W.M. Leung, School of Biological Sciences, University of Canterbury, New Zealand
- Der-Ming Yeh, Department of Horticulture, National Taiwan University, Taipei, Taiwan
- Duong Tan Nhut, Dalat Institute of Biology, 116 Xo Viet Nghe Tinh, Dalat, Lam Dong, Vietnam
- E.Lahav, Head, Department of Fruit Trees, ARO-Volcani Centre, P.O. Box 6, Bet-Dagan, Israel
- E.Litz Richard, University of Florida, 18905 (SW) 280th. Street, Homestead, Florida (USA)
- Ekaterini Traka, Traka-Mavrona Aristotelian, University of Thessaloniki, Greece
- Elhadi M. Yahia, Bosque España 8, Colinas del Bosque Queretaro, 76190, Qro., Mexico.
- Enzo Magliulo, CNR ISAFoM, S. Sebastiano (Na) - Italy
- ES du Toit, Southern, African Society of Horticultural Sciences, South Africa
- Eun-Joo Hahn
- Fábio Pinto Gomes, Brazil
- Freddy Leal, Central University of Venezuela, College of Agriculture, Maracay, Estado, Aragua P.O. Box 4736, Maracay-Aragua
- Fure-Chyi Chen, Institute of Biotechnology, Institute of Tropical Agriculture and International Cooperation, National Pingtung University of Science and Technology (NPUST), Taiwan
- G.Sivakumar, Research Center for the Development of Advanced Horticultural Technology, Chungbuk National University, 48 Gaeshin-dong, Cheongju 361-763, South Korea
- Hugo S. Garcia, Professor of Food Science, Instituto Tecnologico de Veracruz., Apado. Postal 142, Veracruz, Mexico
- Inuwa S. Usman, Department of Plant Science, ABU, Samaru – Zaria, Nigeria.
- Kee-Yoep Paek, Korea
- Leon A. Terry, Plant Science, Institute of BioScience and Technology, Cranfield University at Silsoe, Bedfordshire, MK45 4DT, UK
- Liang Chen, Lab for Germplasm, Breeding and Molecular Biology, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, Zhejiang 310008, China
- Luis Romero, Department of Plant Physiology, Faculty of Sciences, University of Granada, E-18071 Granada, Spain
Majeed Mohamad, Department of Food Production, Faculty of Agriculture and Natural Sciences, University of The West Indies, St. Augustine, Trinidad, West Indies

Metaxia Koutsika-Sotiriou, Department of Genetics and Plant Breeding, Aristotelian, University of Thessaloniki, Greece

Mucahit Taha Ozkaya, Ankara University, Faculty of Agriculture, Department of Horticulture, Turkey

Narayana R. Bhat, Aridland Agriculture and Greenery Department Kuwait Institute for Scientific Research, P. O. Box 24885, 13109 - Safat, Kuwait

Nazim Gruda, Humboldt University of Berlin, Institute for Horticultural Sciences, Department of Vegetable Crops, Lentzeallee 75, 14195, Berlin

Nikolaou N.A., Aristotle University of Thessaloniki, Thessaloniki, Greece

Norbert Keutgen , Ostlandweg 19, D-37075 Göttingen, Germany

P.L. Tandon, Principal Scientist, Project Directorate of Biological Control (ICAR), Bellary Road, Bangalore-560024, India

Piet Stassen, Institute of Tropical and Subtropical crops, Nelspruit 1200, South Africa

Po-Yung Lai National Pingtung University of Science & Technology, Taiwan

Prange, Robert, 32 Main Street/32, rue Main, Kentville, Nova Scotia/Kentville (Nouvelle-Écosse) B4N 1J5, Canada

R.P. Awasthi, Ex. Vice Chancellor, Dr. Y.S. Parmar University of Horticuture and Forestry, Solan-173230, India

Ram Kushun, Central Institute for Subtropical Horticulture, Rehmankhera, PO Kakori, Lucknow-227107, India

Ranvir Singh, Ex.Dean, College of Agriculture, GB Pant University of Agric. & Tech., Pantnagar-263145, (Nainital), India

Reginaldo Baez-Sanudo, Carretera La Victoria, Km 0.6, Hermosillo, Sonora Mexico

Riccardo d'Andria, CNR ISAFoM, Ercolano (Napoli), Italy

S. Adaniya, College of Agriculture, University of the Ryukyus, Nishihara, Okinawa, Japan.

Salih Kafkas, Department of Horticulture, Faculty of Agriculture, University of Cukurova, Adana-Turkey

Samuel Kwame Offei, Department of Crop Science, University of Ghana, Legon, Ghana

Sisir Mitra, Professor and Head, Department of Fruits and Orchard Management BCKVV, Kalyani 741235, Nadia, West Bengal, India

Suprasanna Penna , Plant Cell Culture Technology Section, Nuclear Agriculture and Biotechnology Division Bhabha Atomic Research Centre, Trombay, Mumbai, India

Teresa Terrazas Salgado, Genetics Program, Colegio de Postgraduados. Mexico-Texcoco, Montecillo, Estado de Mexico

Tzong-Shyan Lin, Department of Horticulture, National Taiwan University, No 1 Sec 4 Roosevelt Rood, 106 Taipei , Taiwan ROC

Uri Lavi, ARO-Volcani Centre, P.O. Box 6, Bet-Dagan, Israel

Vasilieos Noitsakis , Laboratory of Plant Production, University of Ioannina, G. Seferi 2, Agrinio-Greece

Verschoor, Jan , Wageningen UR, Agrotechnology and Food Innovations B.V., Neus Zealand

Yuanwen Teng, Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Huajiachi Campus, Hangzhou City, Zhejiang Province, P.R.China

Yueming Jiang, South China Institute of Botany, The Chinese Academy of Sciences, Guangzhou ReYiJu, The People's Republic of China

Zeev Wiesman, The Institute for Applied Research, Ben Gurion University of the Negev, Beer Sheva, 84105, Israel

Zen-hong Shu, National Pingtung University of Science and Technology, Dept. of Plant Industry, Pingtung, Taiwan

Zora Singh, Department of Horticulture, Curtin University of Technology, GPO Box U 1987, Perth, Western Australia 6845

Chief Editor

Dr R.P. Srivastava, Ex.Director, Horticulture and Food Processing, Deputy Director General (Horticulture), UPCAR, UP, Lucknow-226016, India

Editor

Dr. Shailendra Rajan, Principal Scientist, Central Institute for Subtropical Horticulture, Rehmankhera, PO Kakori, Lucknow-227107, India
Influence of adsorbent-arak ratio and distillation period in bioethanol purification process using Balinese liquor as a raw material

K.N. Svara¹, B.A. Harsojuwono¹,² and I.B.W. Gunam¹
¹Department of Agroindustrial Technology, Faculty of Agricultural Technology, Udayana University, Bali, Indonesia. ²Present address: Faculty of Agricultural Technology, Udayana University, Bukit Jimbaran, South Kuta, Badung, Bali (80361), Indonesia.
DOI: https://doi.org/10.37855/jah.2021.v23i01.08
Key words: Arak, adsorbent ratio, distillation period, bioethanol
Show Abstract

Metabolite profile of ethanol extract of Curcuma domestica Val. variety Turina-1

S. Mulyani¹,² B.A. Harsojuwono¹ and I.K. Satriawan¹
¹Department of Agroindustrial Technology, Faculty of Agricultural Technology, Udayana University, Bali, Indonesia. ²Present address: Faculty of Agricultural Technology, Udayana University, Bukit Jimbaran, South Kuta, Badung, Bali (80362), Indonesia.
DOI: https://doi.org/10.37855/jah.2021.v23i01.02
Key words: LC-MS, profile metabolite, ethanolic extracts, Curcuma domestica Val, Turina-1
Show Abstract

Determination of key parameters for grading dehusked coconut using principal component analysis

A. Asha Monicka¹, T. Pandiarajan² and S. Ganapathy²
¹Department of Agriculture, Karunya Institute of Technology and Sciences, Coimbatore-641114, India. ²Department of Food and Agricultural Process Engineering, Tamil Nadu Agricultural University, Coimbatore-641003, India.
DOI: https://doi.org/10.37855/jah.2021.v23i01.03
Key words: Coconut, principal component analysis, score plot, grading
Show Abstract
Influence of adsorbent-arak ratio and distillation period in bioethanol purification process using Balinese liquor as a raw material

K.N. Svara¹, B.A. Harsojuwono¹,²* and I.B.W. Gunam¹

¹Department of Agroindustrial Technology, Faculty of Agricultural Technology, Udayana University, Bali, Indonesia.
²Present address: Faculty of Agricultural Technology, Udayana University, Bukit Jimbaran, South Kuta, Badung, Bali (80361), Indonesia. *E-mail: bambangadmadiharsojuwono65@gmail.com

Abstract

Arak is one of traditional Balinese drink that has potential alcohol content used as a raw materials in making bioethanol. The aim of this research was to identify the influence of adsorbent-arak ratio and distillation period on the characteristics of bioethanol and to identify the right method to produce bioethanol with the best characteristics using distillation-adsorptive purification method. This research used a randomized block design with factorial experiment. The first factor is an adsorbent-arak ratio, i.e. 1:2, 1:3 and 1:4. The second factor is the distillation period, i.e., 1, 2, 3 hr. Each factor is grouped into two groups based on the two times of arak production so that there are 18 experimental units. The data were processed using Analysis of Variance (ANOVA) and followed by Duncan test. The result shows that the ratio of adsorbent-arak and distillation period had a significant effect on ethanol content, density, specific gravity, API gravity, and heating value. The combination of 1:3 adsorbent-arak ratio and one-hour distillation period produced the best characteristic with the following criteria: ethanol content 91.86 %, density 0.8280 kg/L, specific gravity 0.8141, API Gravity 42.315, and heating value 11081.9 kcal/kg.

Key words: Arak, adsorbent ratio, distillation period, bioethanol

Introduction

In line with the recent development era, there is an increase in energy needs; fossil fuels that exist today cannot be expected for a long period of time. New alternative energy sources are needed which are sufficient and can save energy from fossil fuels (Jhonprimen et al., 2012). Bioethanol is a biochemical liquid from the fermentation process of sugar from carbohydrate sources using the aid of microorganisms. Bioethanol has been recognized as an important renewable and sustainable fuel source for the modern industry (Yang et al., 2012; Gunam et al., 2019).

Arak is one of the traditional Balinese liquor from traditional distillation of palm juice and coconut. Arak has the potential for high alcohol content (± 30 %) which is suitable to be used as a raw material for the production of bioethanol production (Sukadana and Tenaya, 2014). To improve the quality of bioethanol from Arak, further purification is necessary to increase the concentration of alcohol content. One of the purification methods which is commonly done is by distillation (Goering and Schrader, 1988).

Distillation is a method for separating two types of solutions based on the boiling point differences. However, according to Onuki et al. (2008), this method has several deficiencies. First, it is estimated that there are impurities with similar boiling point to ethanol mixed with ethanol after the distillation process so that the purity is low. Second, distillation which is a process of repetition of evaporation and condensation, requires high costs. Efforts that can be done to overcome this; a purification process is needed by means of adsorption as a continuation of the distillation process, to achieve a purity of around (90–95 % v/v). This process is known as the distillation-adsorption process (Mujiburohman et al., 2006; Patil and Patil, 2017).

Distillation-adsorption is a combination of two separation processes, namely distillation and adsorption. In this method, the distillation and adsorption processes are carried out simultaneously, that is, by means of the adsorbent column arranged together with a distillation tool. Furthermore, the distillate vapor will pass through the adsorbent column. The adsorbent will absorb water vapor so that the purity of ethanol rises. The difference between distillation-adsorption and other distillation methods is the addition of the additives substance which does not mix together with the solution but in a separate column. Thus, the separation between the additives and the solutions is not required (Silviana and Purbasari, 2008; Tang et al., 2013; Chopade et al., 2015). The adsorbent chosen in the bioethanol distillation-adsorption process is a hydrophilic adsorbent because it has the ability to absorb water. Silica gel is used because it has several advantages including being very inert, hydrophilic and the costs of synthesis are quite low. In addition, this material has a relatively stable thermal and high enough mechanic which relatively does not expand in organic solvents when compared to organic polymer solids (Purwaningsih, 2009).

Studies on the use of adsorption distillation methods in the purification process have been carried out, one of which is in the process of separating isopropyl alcohol-water mixtures (Silviana and Purbasari, 2008; Mujiburohman et al., 2006; Banat et al.,...
2003). The adsorption distillation method was also investigated by Rizki et al. (2012), based on the results of the study it was found that the most effective process for ethanol purification is the adsorption distillation process with the ethanol content produced at 98 % (v/v). Furthermore, research conducted by Yuliana et al. (2015) reported purification process based on the adsorbent-ethanol ratio. It is known that with an adsorbent-ethanol ratio of 1:2, the purity of bioethanol obtained is 99.7 % (v/v). Based on this, a study was conducted to identify the effect of adsorbent-arak ratio and distillation period in order to obtain the best bioethanol characteristics in the bioethanol purification process using arak with the distillation-adsorption method.

Materials and methods

Material: The arak fermented coconut obtained from Duda Village in Karangasem and Dawan Village in Klungkung with ± 30 % alcohol content (v/v), and granular white silica gel adsorbent (non-food grade) obtained from Bratachem.

Research design: This research used a two factor randomized block design with factorial experiment. The first factor was the weight ratio between adsorbent and arak which consists of three levels, namely, 1:2, 1:3, and 1:4. The second factor was the distillation time consisting of three levels, namely, 1, 2, and 3 hr grouped into two groups based on times of arak production so that 18 experimental units are obtained. The experimental data were analyzed using the ANOVA and DMRT.

Research implementation: Initially, the silica gel adsorbent was physically activated; physical activation was carried out by heating the adsorbent on the furnace at a temperature of 200 ± 2 °C for 2 hours. Physical activation is carried out to increase the absorption ability of silica gel adsorbents. Then, the activated adsorbent was inserted into the adsorbent column contained in the distillation according to the adsorbent-arak ratio (1:2, 1:3, 1:4). The volume of arak used for each ratio was 1; 1.5; and 2 L, while an adsorbent was used as much as 0.5 kg for each ratio. The arak that was used was obtained from local arak maker from two regions, namely from Duda and Dawan villages. The alcohol content was measured first using an alcohol meter and entered into the feed column according to the adsorbent: arak ratio (1:2, 1:3, 1:4). Arak was heated until the temperature reaches 80°C and was kept constant. The distillation process was carried out at 80°C because ethanol boils at 78.4°C while water was 100°C. Furthermore, the steam produced by the arak will pass through the adsorbent column and the water vapor produced from the heating process will be adsorbed by the silica adsorbent gel. The ethanol vapor will pass through the cooling column and then accommodate in the distillate tank. The period of distillation-adsorption process was carried out according to the experimental variables (1, 2, 3 hr). The distillate obtained from the distillation process was then counted according to the observed parameters. Meanwhile, the used of silica gel adsorbent was removed from the distillation tool and then reactivated for further use.

The variables observed: Ethanol content (SNI: Indonesian National Standard, 3565:2009), density, Specific Gravity, API Gravity and heating value (Tjokrowisastro and Widodo, 1990).

Data analysis: The data were analyzed according to the variant (ANOVA) and continued with Duncan’s multiple comparison

Results

Bioethanol content: Based on the results of the ANOVA, it is known that the adsorbent-arak ratio, duration of distillation and interaction between treatments, has a very significant effect on the ethanol content obtained from the purification process by the adsorption distillation method. Based on Table 1, it is known that the highest level of bioethanol produced in the adsorption distillation process is the weight ratio of adsorbent-arak is 1:2 with distillation period for one hour which is equal to 92.65 % and the longer the distillation period, the bioethanol content will decrease, as shown in Table 1.

Table 1. Average value of bioethanol (v/v)

<table>
<thead>
<tr>
<th>Adsorbent-arak ratio</th>
<th>Distillation period (hour)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td>1:2</td>
<td>92.65±0.54a</td>
</tr>
<tr>
<td>1:3</td>
<td>91.86±1.05a</td>
</tr>
<tr>
<td>1:4</td>
<td>90.79±0.90b</td>
</tr>
</tbody>
</table>

Same letter after the average value shows non significant difference at P=0.05.

Density: Based on Table 2, the highest bioethanol density obtained through purification by the distillation-adsorption method is a combination treatment ratio of 1:2 for three hours with a density of 0.8463 (g/ml). The lowest bioethanol density was produced by a combination of 1:2 ratio treatments for one hour with a density of 0.8258 (g/ml) and this treatment combination was not significantly different from the bioethanol density produced by the combination of 1:3 ratio treatments for one hour with a density of 0.8280 (g/ml). Based on the average value of bioethanol density, it is known that the longer the distillation process, thus the higher bioethanol density obtained.

Table 2. Average density value of bioethanol (g/mL)

<table>
<thead>
<tr>
<th>Adsorbent-arak ratio</th>
<th>Distillation period (hour)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td>1:2</td>
<td>0.8258±0.001a</td>
</tr>
<tr>
<td>1:3</td>
<td>0.8280±0.003a</td>
</tr>
<tr>
<td>1:4</td>
<td>0.8311±0.003c</td>
</tr>
</tbody>
</table>

Same letter after the average value shows non significant difference at P=0.05.

Specific gravity: Based on Table 3, the highest specific bioethanol gravity obtained through purification by the distillation-adsorption method is the combination of 1:2 ratio treatments for three hours with a specific gravity of 0.8321. In line with the increasing distillation period an increase in the value of specific gravity bioethanol.

Table 3. Bioethanol specific gravity average value

<table>
<thead>
<tr>
<th>Adsorbent-arak ratio</th>
<th>Distillation period (hour)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td>1:2</td>
<td>0.8120±0.001b</td>
</tr>
<tr>
<td>1:3</td>
<td>0.8141±0.003c</td>
</tr>
<tr>
<td>1:4</td>
<td>0.8172±0.003d</td>
</tr>
</tbody>
</table>

In the data analysis applied software program of SPSS 25. Same letter after the average value shows non significant difference at P=0.05.
API gravity: Based on Table 4, the highest bioethanol API gravity obtained by purification using the distillation-adsorption method is a combination of 1:2 ratio treatment, one hour distillation period with API Gravity of 42.761 and the combination of these treatments is not significantly different from the API Gravity bioethanol produced by a treatment combination of 1:3 ratio, distillation period for one hour, ratio 1:3, distillation period of two hours and ratio of 1:4, distillation period for one hour. The lowest API Gravity bio-ethanol produced by a combination treatment ratio of 1:2, for three hours are 38.557. The longer the distillation period, the API value will be reduced.

Table 4. Average value of API gravity

<table>
<thead>
<tr>
<th>Adsorbent-arak ratio</th>
<th>Distillation period (hour)</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:2</td>
<td>42.761±0.31</td>
<td>39.925±0.13</td>
<td>38.557±0.71</td>
<td></td>
</tr>
<tr>
<td>1:3</td>
<td>42.315±0.59</td>
<td>41.163±0.01</td>
<td>40.244±0.38</td>
<td></td>
</tr>
<tr>
<td>1:4</td>
<td>41.658±0.58</td>
<td>40.610±0.40</td>
<td>39.557±0.08</td>
<td></td>
</tr>
</tbody>
</table>

Same letter after the average value shows non significant difference at $P=0.05$.

Heating value: Based on Table 5; it is known that the heating value of the produced bioethanol shows a decrease with the longer time of distillation-adsorption and decreasing the adsorbent-arak ratio. The heating value produced by bioethanol is closely related to the bioethanol content; it is known that the longer the distillation-adsorption process, the bioethanol content will decrease, it is due to the increased of water content in the distillate.

Table 5. Average value of heating value (kcal/kg)

<table>
<thead>
<tr>
<th>Adsorbent-arak ratio</th>
<th>Distillation period (hour)</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:02</td>
<td>11091.8±6.90</td>
<td>11056.3±4.26</td>
<td>11035.9±8.38</td>
<td></td>
</tr>
<tr>
<td>1:03</td>
<td>11081.9±13.20</td>
<td>11044.0±8.80</td>
<td>11028.7±1.67</td>
<td></td>
</tr>
<tr>
<td>1:04</td>
<td>11067.3±12.97</td>
<td>11029.6±2.83</td>
<td>10998.3±15.79</td>
<td></td>
</tr>
</tbody>
</table>

Same letter after the average value shows non significant difference at $P=0.05$.

Discussion

Bioethanol content: That result is caused by the silica gel which adsorbs the distillate is starting to be saturated, so the water vapor formed during the distillation process is not adsorbed properly, which results in a decrease in the content of bioethanol obtained. According to the research conducted by Satria and Bernardi (2009), the longer the adsorption process is carried out, the higher the purity of ethanol obtained until at a certain point it reaches a saturated condition. In this situation, extending the adsorption time no longer increases the purity of ethanol. This is in accordance with the results of research Chopade et al. (2015), where the absorption of water by adsorbents takes place quickly in the first 60 minutes of the adsorption process and according to Wirawan et al. (2014), a decrease in the concentration of bioethanol during the distillation process showed that the adsorbent used had been saturated. The longer the distillation is done, the level of saturation of the adsorbent increases so that it affects the decrease of the concentration of bioethanol produced. Meanwhile, for the treatment of adsorbent-arak ratio, the greater the weight ratio of adsorbent-arak, therefore the content of bioethanol obtained will be increased because the increase in the adsorbent dose is used which provides a greater surface so that water absorption by silica gel is more effective (Qu et al., 2012).

Density: That result is caused by water vapor formed during the distillation process of bioethanol adsorption is not completely absorbed by the silica gel adsorbent because the adsorbent has begun to saturate, so that the formed water vapor joins the distillate which causes an increase in the value of the distillate density obtained. This is in accordance with Bahtiar's (2013) study, which states that the increase in the density value in bioethanol is due to the water content which is still present in distilled bioethanol. The smaller the density means the lighter the specific gravity and the quality is better. Based on the research carried out by Kholidah and Abtokhi (2015), the value of ethanol content gives a great effect on the value of density. The higher the value of the ethanol content, therefore the longer the carbon chain and causes the carbon chain to be broken easily with the increasing temperature, and the ethanol experiences evaporation resulting in reduction of the density value.

Specific gravity: That result is caused by the speed of mass transfer of water into the silica adsorbent will continue to decrease with the increase of the time of adsorption, so the concentration of water out of the old column, the longer the time it will increase so that the specific gravity value obtained through the distillation-adsorption method increases (Jannah, 2016). The lowest specific gravity of bioethanol is produced by a combination of 1:2 ratio treatments for one hour with a specific gravity of 0.8120 and this combination of treatments is not significantly different from the specific gravity bioethanol produced by a combination treatment ratio of 1:3 for one hour with a specific gravity of 0.8141. The greater the ratio of adsorbent-arak, the more silica gel composition is used, thus the more surface area of the adsorbent and increases the water molecules absorbed in the adsorbent (Dyartanti et al., 2012) this causes an increase in alcohol content in the distillate. The increase of alcohol, automatically the weight or density of the distillate will be lower in which it also causes the specific gravity of the mixture has a low value. This is caused by the specific gravity is the ratio between the density of the substance and the density of water, therefore the density of the substance is decreasing as a result the specific gravity will also be low (Sutanto et al., 2013).

API gravity: That result is related to the absorption of silica gel adsorbent towards water which decreases in accordance with the increase of time. Meanwhile, for the treatment of adsorbent-arak ratio the greater the weight ratio of adsorbent-arak, thus the API gravity obtained will be higher. Because, the quantity of adsorbent fed is more so that the contact between the adsorbent and the mixture is more evenly distributed which results in more impurities in the form of water so that the purity of bioethanol and API Gravity value will increase (Hidayat et al., 2015; Al-Saidy and Al-Dokheily, 2014). The value of API gravity is closely related to specific gravity, where API gravity is the inverse measure of liquid fuel to water (Bint-E-Naser and Hossain, 2017). Accordingly to Kholidah (2014), the purpose of examining API Gravity is to indicate fuel quality, if the specific gravity value is low so the API Gravity value is high; consequently, the quality of the fuel is getting better because it contains more fuel than impurities such as water and paraffin.

Heating value: That result is confirmed by the research carried
out by Sutanto et al. (2013), where bioethanol which has higher alcohol content tends to release greater heat when compared to bioethanol with lower content. The heating value of organic waste bioethanol ranges from 10,000–11,000 kcal/kg, while the heating value of liquid fuels generally ranges from 10,160–11,000 kcal/kg. A greater heating value will cause more flammability so that the quality is better (Wijaya et al., 2012).

Based on the results of the research that has been carried out, the following conclusions can be drawn: The treatment of adsorbent weight ratio, distillation period, and interaction between treatments affect the characteristics of bioethanol obtained from the distillation-adsorption purification process. The combination of the weight ratio of adsorbent treatment 1:3 and one hour distillation period gives the best bioethanol characteristics in the purification of bioethanol from arak by the distillation-adsorption method with the criteria of bioethanol content of 91.86%; density 0.8280 kg/l; specific gravity 0.8141; API Gravity 42.315; and a heating value of 11081.9 kcal/kg. Based on the above research, it is recommended that in the adsorption distillation process it is better to use a distillation tube made of heat-resistant material, using an electric heat source in which its temperature can be regulated and it remained unchanged which minimizes the leakage that occurs in the distillation apparatus.

Acknowledgment

The authors are grateful to the Faculty of Agricultural Technology, Udayana University, for permission to use the laboratory facilities during this research.

References

Khodjah, S. and A. Abtkoki, 2015. Analysis of the effect of variations in the percentage of yeast (Saccharomyces cerevisiae) and time in the fermentation process in the utilization of duckweed (Lemma minor) as bioethanol. J. Neurtrino 7(2): 71-76.

Purwawingsih, D., 2009. Multi-metal adsorption of Ag (i), Pb (ii), Cr (iii), Cu (ii) and Ni (ii) in ethylenediamine-silica hybrid from rice husk ash. J. Penelitian Saintek, 14(1): 59-76.

Sutanto, R., H. Jaya, and A. Mulyanto, 2013. Analysis of the effect of fermentation time and distillation temperature on physical properties (specific gravity and heat value) of bioethanol made from pineapple (Ananas comosus), Dinamika Teknik Mesin, 3(2): 91-100.

