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New-onset diabetes in COVID-19: The
molecular pathogenesis

Desak Made Wihandani*, Made Lady Adelaida Purwanta, W. Riski Widya Mulyani,
I Wayan Ardyan Sudharta Putra, I Gede Putu Supadmanaba

Department of Biochemistry, Faculty of Medicine Udayana University, Sanglah General Hospital, Denpasar, Bali, Indonesia

Summary

Diabetes mellitus (DM) is still a challenging metabolic disease worldwide. In the current situation, the world is facing
a COVID-19 pandemic due to SARS-CoV-2 infection. DM is one of the comorbid conditions that can worsen the severity
of the COVID-19 condition. Surprisingly, SARS-CoV-2 infection can induce new-onset diabetes, a condition in which
acute hyperglycemia occurs and may develop into a complication in nondiabetic patients. Angiotensinconverting
enzyme 2 (ACE2) is a crucial entry factor for SARS-CoV-2 infection. ACE2 will bind to the spike protein of SARS-CoV-2,
potentially initiating a damaging process in many tissues in the human body, including metabolic tissues. This
mechanism suggests a potential role of ACE2 in the pathogenesis of diabetes since ACE2 has been proven to localize in
essential metabolic tissues, one of which is the acini and islets part of the pancreas. This interrelated ACE2 in COVID-19
and DM is thought of as the mechanism that induces new-onset diabetes in COVID-19 patients. This review will
thoroughly describe the current findings and theories regarding the molecular mechanism of SARS-CoV-2-induced new-
onset diabetes and the possible therapeutic intervention.

Keywords: COVID-19, SARS coronavirus, Diabetes, ACE2

1. Background

D iabetes Mellitus (DM) is still a major metabolic
problem and the leading cause ofmorbidity and

mortality worldwide. In 2014, World Health Orga-
nization (WHO) reported that 422 million adults had
diabetes and its prevalence increases yearly [1]. In
2020, we were also challenged by the COVID-19
pandemic. COVID-19 is a disease due to the infection
of Severe Acute Respiratory Syndrome-Coronavi-
rus-2 (SARS-CoV-2) [2]. WHO reported that 83
million with COVID-19 confirmed positive cases and
about 1.8 million confirmed death [3]. COVID-19
symptoms vary from mild to severe; about 90% of
patients showed more than one symptom, and the
three most prevalent symptoms are fever, fatigue,
and cough [4]. Diabetes has been identified as a risk
factor for many infection cases [5,6]; thus, it is sug-
gested as a comorbidity that increases the severity of
the COVID-19 infection [7e10].

Uniquely, some cases have been reported with
newly diagnosed DM in COVID-19 positive cases
without any history of DM [11,12]. Alsadhan et al.
reported five patients admitted to the hospital with
diabetic ketoacidosis (DKA) and positive result on
real-time reverse transcription-polymerase (RT-
PCR) COVID-19. Three of them had a DM history,
and the others were diagnosed with new DM after
being admitted to the hospital with a high level of
HbA1c [11]. Another case report reported three
patients, one diagnosed with DKA and positive for
COVID-19. Interestingly, the other two patients
showed classic DM symptoms like polydipsia and
polyuria post-infected with COVID-19 [12]. In this
condition, COVID-19 infection is aggravated by the
acute hyperglycemia onset, which, if not treated
properly, could potentially lead to fatal complica-
tions in the patient without a history of diabetes.
With such unpredictable and rapid disease
progression, this phenomenon has become quite a
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unique and urgent concern that needs to be un-
veiled. This review will discuss the new onset of DM
in COVID-19 infection more profoundly and show
how COVID-19 and DM interact with each other in
the molecular aspect.

2. The role of ACE2 receptors in SARS-CoV-2
infection

Angiotensin-converting enzyme 2 (ACE2) has
long been a key receptor for the SARS coronavirus.
Becoming the first homolog of ACE with a homol-
ogy sequence of 42%, ACE2 was first found in
human heart failure [13]. SARS-CoV and SARS-
CoV-2 utilize ACE2 as an entry receptor by binding
it with surface protein S and may partly explain the
pathogenesis and predilection of COVID-19
[14e18]. The identification of ACE2 as an entry re-
ceptor for SARSCoV-2 was primarily facilitated by
its similar role in SARS-CoV, which was revealed in
2003. Using the fusion protein technique, Li et al.
unveiled that SARS-CoV efficiently bound ACE2
through S1 protein, and the soluble ACE2 blocked
S1 domain-ACE2 interaction [19e22]. However,
soluble ACE1 did not produce a similar result [21]. It
also revealed that the anti-ACE2 antibody blocked
SARS-CoV replication in Vero E6 cells from African
green monkeys, but antiACE1 had no effect [21].
These results provided a strong foundation for
identifying the SARSCoV-2 receptor.
Accordingly, ACE2 also became the primary re-

ceptor of SARS-CoV-2, which was revealed through
extensive in vivo studies [23e27]. Transgenic mice
with ACE2 deficiency had much less viral load and
viral replication than the control mice [23,25]. These
mice also experienced milder pulmonary alterations
compared to the wild-type mice. Additionally, mice
with human ACE2 overexpression also developed a
higher rate of severe symptoms, which resemble
human patients. Interestingly, the symptoms wors-
ened when the mice were only injected with SARS-
CoV-2 spike protein [27]. Consistently, the admin-
istration of recombinant soluble ACE2 effectively
blocked the interaction between spike (S) protein
and ACE2, highlighting its therapeutic potential for
both SARS and COVID-19 [26]. Together, all of this
evidence suggests the pivotal role of ACE2 in SARS-
CoV-2 infection and, possibly, pathogenesis (see
Fig. 1, illustration adapted from Pang et al. [26]).

2.1. Spike (S) protein and cellular proteases
mediate SARS-CoV-2 entry

The spike (S) proteins of SARS-CoV and SARS-
CoV-2 are similar to 76.5% similarity in amino acid

sequences [28]. SARS-CoV-2's S protein has 1273
amino acids with two crucial domains, referred to as
S1 and S2. Other important parts of the S protein are
the 19 AA Nterminal, which serves as a signal
peptide, and the C-terminal's short cytoplasmic and
short transmembrane domains. The S1 can be
divided into an N-terminal domain (NTD) and a
Cterminal domain (CTD); both serve as receptor-
binding domains. In both SARS-CoV and SAR-
SCoV-2, these domains recognize ACE2, which
serves as the virus's entry receptor. Despite the
difference between the S protein of both viruses,
their 3D structure is similar, which underlies the
function and receptor's similarity [14,15,29].
In order to facilitate its entry, the S protein is

primed by cellular proteases such as endosomal
cysteine proteases (cathepsin B and L) and trans-
membrane serine protease 2 (TMPRSS2) [15,30e33].
This process is very similar to the cellular entry of
SARS-CoV. Proteolysis is essential for SARS-CoV-2
entry, and both S1 and S1 proteins need to be
cleaved to initiate the viral entry process [34].
Interestingly, the cleavage site of SARS-CoV-2 is
slightly different from SARS-CoV with a new,
conserved insertion sequence between S1 and S2,
which is recognized by Furin, a kexin-like subfamily
of proprotein convertases [35]. Another difference is
the arginine residues found in the S1/S2 cleavage
site, but the importance of these differences needs
to be investigated [36].
The importance of endosomal cysteine proteases

is reported in several studies that showed that
modification of endosomal pH inhibited SARS-
CoV-2 entry, which is likely due to the inactivation
of endosomal proteases [15]. On the other hand,
camostat mesylate, a TMPRSS2 inhibitor, only
partly inhibited SARS-CoV-2-S cellular entry.
Finally, the viral entry is entirely blocked if
TMPRSS2 and endosomal cysteine proteases are
inhibited [15].
TMPRSS2 is important for viral fusion protein

activation during cellular entry, specifically by
cleaving and activating subunit S1, facilitating viral
attachment to the target cell plasma membrane
[15,30,31]. Pathologically, both TMPRSS2 and ACE2
are expressed in the lungs. TMPRSS2 is expressed
mainly in sub-segmental bronchial branches and
lung tissue, while ACE2 is mainly found in sub-
segmental bronchial branches by transient secretory
cell types [32,37]. Their colocalization is important
and highlights the propensity of SARS-CoV-2 in this
region. Colocalization of TMPRSS2 and ACE2 is also
essential for effective infection of SARS-CoV-2,
which enhances the efficiency of viral cellular entry
due to proteolysis of the ACE2-protein S complex
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[37]. The importance of TMPRSS2 has been
demonstrated in vivo studies in which.
TMPRSS2 deficiency in mice reduced viral parti-

cles in the lungs [38]. Also, it was reported that
ADAM17 could also cleave ACE2, and it competed
with TMPRSS2 [39]. Therefore, this evidence indi-
cated the potential protective effect of ADAM17.
However, with TMPRSS2, ADAM17 also regulates
the ectodomain shedding of ACE2, which supports
SARS-CoV-2 entry through endocytosis [40].
Therefore, further investigations are needed to
delineate the exact role of ADAM17 in SARS-CoV-2
infection.
Overall, evidence shows the pivotal role of protein

S priming by host proteases and inhibiting these
proteases may hold a clue for COVID-19 therapy.
Protein S cleavage allows viral fusion and entry to
the cells, initiating infection and the viral repro-
duction process. These processes are also crucial in
the pathogenesis of COVID-19-induced new-onset
diabetes, which will be explained in the next section
of this review.

3. ACE2: The link between SARS-CoV-2 and
the key metabolic tissues

ACE2 is a unique, newly found enzyme that plays
an important role as a compensatory enzyme in the
pathogenic process of diabetes. Besides its well-
known expression in the respiratory tract, ACE2
also presents in essential metabolic tissues such as
the pancreas, liver, adipose tissue and kidney. ACE2
is localized in the acini and islets part of the
pancreas, similar to ACE distribution [41]. A recent
study suggested that ACE2 expression is slightly
higher in the pancreas than in the lungs. Addition-
ally, its expression occurs in both the exocrine and
endocrine glands of the pancreas [42]. In the liver,
ACE2 presents in hepatocytes, where it was found to
be elevated in hepatic fibrosis and hypoxic condition
of the liver, indicating its compensatory part for
such fibrogenic diseases [43,44]. While in the kid-
ney, ACE2 collocates with ACE on the apical surface
of the proximal tubules and glomerulus [45]. Its
presence in the vital metabolic tissues contributes to

Fig. 1. The infection process of host cells by SARS-CoV-2. Similar to SARS-CoV, SARSCoV-2 uses ACE2 as its receptor and viral internalization
begins with the interaction between spike (S) protein and ACE2, primed by TMPRSS2. After internalization, endosomal proteases facilitate the fusion
between viral membrane and endosomal membrane. The viral RNAs use host machinery to translate their genetic information into functional viral
proteins which then assemble themselves into a new endosome. The exocytosis process finally releases the new virions to the extracellular space.
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the normal regulation of the tissue renin-angio-
tensin system (RAS) signaling pathway and main-
tenance of the metabolism homeostasis (see Fig. 2,
illustration adapted from Battle et al. [46]).
ACE2 inhibits angiotensin-II upregulation by

degrading angiotensin-II into the primary prod-
ucts Ang-(1e7), which could counter the debili-
tating effects of RAS hyperactivity such as
hyperglycemia, hypertension, cardiac dysfunction
and fibrosis [47]. While angiotensin-II has vaso-
constriction, pro-oxidant and inflammation effects,
the products of ACE2 act on the Mas receptor to
counteract such effects by inducing vasodilation,
prostaglandin release and inhibition of norepi-
nephrine secretion [48e50]. The vasodilatory effect
is thought to result from the modulation of NO
release by the Akt pathway by the angiotensin-
(1e7). The NO modulation leads to compensatory
impacts such as increased blood flow of the islet
vessels during demanding functional conditions
such as obesity, diabetes or merely high blood
glucose peak [47].
Moreover, ACE2 also has an inhibitory effect on

damaging islet factors, reactive oxygen species
(ROS) and TGF-b. Previous studies imply that dur-
ing the state of hyperglycemia, ROS has produced in
pancreatic b-cells through the activation of NAD(P)
H oxidase (NOX). The activation of NOX is induced
by angiotensin-II and AT1 receptor interaction,
eventually leading to pancreatic b-cells dysfunction
[51]. Through its degrading angiotensin-II mecha-
nism, ACE2 could prevent this damaging process

and maintain the pancreatic b-cells morphology
[52]. In line with that, ACE2 also preserves islet
structure through the blockade of TGF-b by RAS
inhibition. All these protective and compensatory
mechanisms supposedly prevent islet fibrosis and
function loss. Despite its lack of effect on basal in-
sulin secretion, RAS inhibition by ACE2 could pro-
tect b-cells from damaging factors, thus improving
insulin synthesis and secretion [47].
The evidence of the presence of ACE2 in essential

metabolic tissues, especially the pancreas and its
key role in SARS-CoV-2 infection shows a strong
link that may lead to pancreatic injury hyperglyce-
mia episodes or, even worse, new-onset diabetes.
However, its pathogenesis of pancreatic damage
remains controversial, and it is essential to uncover
possible therapeutical intervention purposes. The
established theory of ACE2 as a key entrance of
SARSCoV-2 indicates a more complicated possibil-
ity of the exact role of ACE2 in diabetes since it
could act as a double-edged sword [47e53]. On the
one hand, ACE2 expression is favorable for its
protective mechanism in acute lung injury and
compensatory effects in diabetes. However, on the
other hand, its elevated expression may also facili-
tate more coronavirus entry into the host cells.
In response to that evidence, more researches are

ongoing to elucidate a more explicit pathogenic
process. Liu et al., in their cohort research, showed
that 1e2% of nonsevere (without comorbidity and
asymptomatic) and 17% of severe (with comorbid-
ities and presenting symptoms) COVID-19 patients

Fig. 2. The role of ACE and ACE2 in the RAS signaling pathways. Both enzymes work in balance to maintain homeostasis in human body.
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had a pancreatic injury [42]. Immunohistochemical
staining in their study showed that both endocrine
and exocrine glands of the pancreas expressed
ACE2 quite significantly in COVID-19 patients. It
was also suggested that patients in the study might
have been experiencing pancreatic injury even
before admission, indicating the coronavirus's rapid
attack on the pancreatic cells. This acute damaging
process leads to the acute onset of hyperglycemia,
which becomes one possible reason for the higher
risk of death in SARS-CoV-2 infection [42]. This
result is also in line with Yang et al. report that
SARS-CoV-infected patients presented with hyper-
glycemia, which might be resulted from the
damaging process of the pancreatic islets through
ACE2 [53]. The idea of COVID-19-induced new-
onset diabetes is still very novel, and evidence-
based theories are still limited. Nonetheless, further
research has been undertaken better to understand
the unique mechanisms and well-established ther-
apeutical interventions.

4. SARS-CoV-2-induced new-onset diabetes

New-onset diabetes has been long established for
more than a decade [54], and in recent days, it is
coming to the surface again due to COVID-19. Ac-
cording to the term itself, new-onset means the
symptoms occur for the first time in people without
any history of diabetes. If left untreated, the symp-
toms manifest so acutely that they may develop into
fatal complications such as ketoacidosis and hyper-
osmolarity [55,56]. Several conditions can induce
this condition, including organ transplantation [57],
the use of hypertensive drugs, thiazide diuretics and

beta blockers [58], as well as a severe infection
[53,55,56]. In the case of SARS-CoV-2 infection,
however, diabetes and COVID-19 have a bidirec-
tional relationship. Diabetes could exist previously
as a comorbid and increase the risk of severe
COVID-19, but it could also present for the first time
as an acute onset. The latter case will require
aggressive treatment, and its disease progression
depends on the patient's clinical status [59].
Several studies illustrate a possible link between

new-onset hyperglycemia and the severe coronavi-
rus disease 2019 (COVID-19). Interestingly, this
new-onset hyperglycemia is not associated with
other risk factors, such as obesity, prediabetes, dia-
betes mellitus, or corticosteroid use [60]. Another
finding by Li et al. states that COVID-19 patients
who develop new-onset diabetes are known to have
a higher mortality risk than COVID-19 patients who
have had a history of diabetes or hyperglycemia
[61]. Also, evidence regarding a high prevalence of
diabetic ketoacidosis and hyperosmolarity has been
documented in patients with COVID-19. Case
reports suggest that COVID-19 can accelerate dia-
betic ketoacidosis (DKA) in subjects with new-onset
hyperglycemia (diabetes) or pre-existing diabetes
mellitus [62]. Early identification of DKA symptoms
is needed to improve the prognosis of DKA related
to COVID-19 [62]. Table 1 [63e65] summarizes the
characteristics of new-onset diabetes in patients
with COVID-19 that have been reported in several
case reports.
However, the specific metabolic complications of

COVID-19 are still not well defined. Therefore, an
international diabetes research group initiated the
CoviDIAB Project to conduct global records of

Table 1. Characteristics of new-onset diabetes in COVID-19 patients from several case reports.

Reference Gender Age BMI Patient's History

Chee
et al. [63]

Male 37 y.o 22.6 -kg/m2 A previously healthy man with no evidence of Insulin resistance
e The patient has symptoms of fever, vomiting, polyuria and polydipsia one

week before admission to the hospital
e Abnormality in the physical examination: mildly tachycardic.
e Laboratory results: high blood glucose, high anion gap metabolic acidosis and

ketonemia confirmed the patient to be in DKA.
Haidil

et al. [64]
Male 47 y.o 26.3 -kg/m2 The patient was initially not known to have diabetes but had nocturia, fatigue, and

general body aches four days before admission.
e Abnormalities in the physical examination: Tachycardic and Tachipneic
e Laboratory results: hyperglycemia, high anion gap metabolic acidosis and ketonuria,

confirming the diagnosis of DKA
Heaney

et al. [65]
Male 54 y.o 42.56 -kg/m2 The patient experienced fatigue for three weeks, which later developed into

shortness of breath and coughing one week before being admitted to the hospital.
e The patient has a history of kidney stones, hypertension, testicular hypofunction

and erectile dysfunction
e Abnormalities in the physical examination: ill, tachypneic, tachycardic.
e Laboratory results: high blood glucose, anion gap metabolic acidosis, and ketonuria

confirming the diagnosis of DKA
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diabetes patients related to Covid-19 (covidiab.e-
dendrite.com). The purpose of recording this data
is to define the phenotype of new-onset diabetes in
patients with COVID-19. This condition is deter-
mined based on hyperglycemia, confirmed COVID-
19, previous negative diabetes history, and a history
of normal HbA1c levels. The registry will also be
expanded to allow records of patients with pre-
existing diabetes who later present with severe
acute metabolic disorders. So, this data is expected
to discover the epidemiology and pathogenesis of
diabetesrelated to COVID-19 and obtain in-
structions on the right treatment choice for patients
[59].

4.1. Diabetic ketoacidosis as a possible
complication of new-onset diabetes in COVID-19

Diabetic Ketoacidosis (DKA) is a complication that
can cause morbidity and mortality in people with
diabetes mellitus. DKA generally occurs due to
decreasing insulin levels in the blood, which causes
a decrease in glucose use and uncontrolled lipolysis,
which in turn causes an excessive increase in ketone
bodies and acidosis. This insulin deficiency condi-
tion occurs due to decreased secretion by pancreatic
beta cells or increased insulin requirements trig-
gered by infectious stressors and sepsis. The study
results by Ahuja et al. stated that the strongest
predisposing factor for acute DKA attacks was
infection compared to other predisposing factors
such as an inadequate insulin regimen, early pre-
sentation, or other unknown reasons [66].
As with many other diseases, COVID-19 could

affect DKA patients by increasing the production of
stress hormones and stimulating cytokines. Severe
acute respiratory syndrome coronavirus-2 (SARS-
CoV-2) utilizes binding to the angiotensin-convert-
ing enzyme 2 (ACE2) receptor on infected cells'
membrane to enter the body's cells as a viral com-
plex. ACE2 is found in many organs, such as the
lungs, intestinal tissue, kidneys, heart and pancreas.
ACE2 will convert angiotensin II to angiotensin I.
The wide expression of ACE2 in these organs may
explain the clinical symptoms of SARS. When talk-
ing about DKA that occurs in patients with COVID-
19, it is known that ACE2 is expressed in the
endocrine part of the pancreas. This evidence sup-
ports the statement that SARS-CoV-2 can enter the
islet of the pancreas using ACE2 as its receptor.
Therefore, a possible mechanism that plays a role in
the development of DKA is the spread of ACE2
receptors by SARS-CoV-2 during this virusehost
interaction, which can cause damage to pancreatic
beta cells and subsequently interfere with their

function. Furthermore, insulin deficiency can occur,
leading to the development of acute diabetes [67,68].
In addition to direct beta cell damage, ACE2

expression on the surface of the pancreas is down
regulated along with endocytosis of the ACE2-virus
receptor complex. Reduced ACE2 expression can
increase angiotensin II concentration, which cannot
be converted to angiotensin I. In turn, the condition
can inhibit insulin secretion [10,69]. The interaction
between the virus that causes COVID-19 and the
renin-angiotensin-aldosterone (RAAS) system may
explain the pathophysiology that underlies DKA.
These two factors are likely the basis of the acute
deterioration of pancreatic beta cell function and the
trigger for DKA in patients with COVID19. Studies
on whether the nature of these changes is perma-
nent or temporary are still to be carried out.

5. Possible therapeutic intervention

According to the latest studies, there are several
recommendations regarding antidiabetic agents in
COVID-19 patients. As discussed earlier, patients
with COVID-19 can experience acute hyperglyce-
mia. Clinicians must carry out glycemic control
quickly, precisely and effectively to deal with this
condition. Therefore, it is necessary to be careful in
choosing the therapeutic modality based on its po-
tential effectiveness and side effects. In their
respective reviews, Lim et al. and Drucker have
recommended glucagon-like peptide-1 receptor
agonists (GLP-1Ras) for COVID-19 patients with
mild to moderate symptoms because these agents
can reduce glucose levels as well in outpatients
[70,71]. However, the study results still do not sup-
port the recommendation to use this modality as a
substitute for insulin in critically ill patients with
type-2 diabetes mellitus and COVID-19, especially if
therapy must be started in severe conditions.
GLP-1 receptor agonists (GLP1-RAs) or incretin-

mimetics provide pharmacological levels of exoge-
nous GLP1, which, analogous to the incretin
hormone, have the effect of losing weight, inhibiting
the release of glucagon, inhibiting appetite, and
slowing gastric emptying [72,73]. GLP-1RAs have
broad anti-inflammatory action when studied in
animals with inflammation. This agent can also
reduce systemic inflammatory biomarkers in
human subjects with type 2 diabetes mellitus and
obesity [74]. Several studies have shown that GLP-
1RAs can reduce lung inflammation, decrease
cytokine production and maintain lung function in
mice with experimental lung injury [75e77]. GLP-
1RAs have been shown to reduce pulmonary type 2
immune cytokine responses and lung damage levels
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in mice with respiratory syncytial virus (RSV)
infection isolated from a hospitalized infant with
severe lower respiratory tract infection and bron-
chiolitis [78]. Liraglutide, a GLP-1Ras, has a good
safety and effectiveness profile when used as acute
control of perioperative blood glucose in adult
subjects undergoing elective cardiovascular surgery
[79]. Also, liraglutide has been reported to improve
cardiovascular outcomes in diabetic patients. It has
a minimal risk of causing hypoglycemia, so it would
be great if the administration of this agent could be
further investigated in COVID-19 patients with
diabetes [80].
Furthermore, based on Lim et al. [70] and

Drucker's [71] recommendation, the use of insulin
can be suggested. Insulin has become the glycemic
control agent of choice for hospitalized COVID-19
patients, and its use is mandatory for critically ill
patients. In its guideline, the American Diabetes
Association (ADA) states that basal insulin or basal-
corrected insulin regimen plus a bolus is a thera-
peutic option for hospitalized patients who are not
seriously ill. Meanwhile, continuous intravenous
insulin infusion is becoming a more recommended
treatment for critically ill patients in the ICU. The
expected target blood glucose for critically ill and
non-critically ill patients ranges from 140 mg/dL to
180 mg/dL (7.8e10.0 mmol/L) [81].
Regardless of the ADA recommendations,

although insulin treatment is the choice for diabetic
patients with severe COVID-19 [81], a study in
Wuhan, China, reported a worse prognosis based
on clinical and laboratory data in patients using
insulin than with patients using metformin [82].
However, these results should still be examined
with caution because of the possible confounding, as
insulin treatment is generally used in more severe
diabetes patients. Other research supports this
hypothesis that insulin infusion is an effective
method to achieve the expected glycemic control
and could reduce the severity and mortality in dia-
betic patients with COVID-19 [83].
Several studies have also shown that insulin

administration can reduce urine ACE2, kidney
ADAM-17 and kidney ACE2 in type-1 diabetes
mouse models [84,85]. Insulin is known to act as an
immunomodulatory agent and an additional anti-
inflammatory agent. These roles include blocking
the NF Kb signaling pathway, reducing TNF-a levels
and disrupting neutrophil chemotaxis [86].
Palermo et al. reviewed the recommendations for

DKA treatment in COVID-19 patients [87]. The
subcutaneous insulin regimen is the primary mo-
dality emphasized in the article. Blood glucose and
ketone bodies in COVID-19 patients with

hyperglycemia should be monitored regularly [88].
There are no specific guidelines regarding fluid and
electrolyte management in patients with COVID-19
and diabetes mellitus. However, several articles can
be referred to for management considerations
[89,90].
Preclinical studies report the anti-inflammatory

role of metformin, wherein metformin can reduce
inflammatory biomarkers' levels in the circulation of
patients with type-1 diabetes mellitus [91]. In a
Chinese study comparing hospital mortality among
COVID-19 patients with diabetes, the hospital
mortality rate was significantly higher in patients
who did not receive metformin than in those who
received metformin (12.3% vs.2.9%; P ¼ 0.01) [92].
However, these findings may have a selection bias
because patients with severe respiratory problems
cannot receive metformin. When discussed from a
molecular perspective, 50-AMP-activated protein
kinase (AMPK) is the main effector of metformin's
pharmacological action. This molecule appears to
have a role in regulating the stability and expression
of ACE2. Metformin can increase the expression of
ACE2 and phosphorylation to the Ser680 residue in
HUVEC cells. In addition, through AMPK, metfor-
min also mediates ACE2 phosphorylation, thereby
increasing the stability of ACE2. This process occurs
through the inhibition of ubiquitination and degra-
dation of its proteasomes. Therefore, theoretically,
metformin might increase the amount of ACE2 in
the respiratory tract, thereby increasing the chance
for SARS-CoV2 to enter cells [93-95]. The clinical
evidence to prove this theory requires further
investigation.
Nonetheless, it cannot be denied that metformin

does have protective effects due to its multiple
molecular mechanisms in the vascular. Metformin
could halt the activation of platelet and the release
of mitochondrial DNA and suppress interaction
between leukocytes and endothelium, thus reducing
endothelial inflammation. These mechanisms pre-
vent vein and artery thrombosis, conferring vascular
protection [96]. With its broad protective mecha-
nism, metformin is considered one of the primary
choices of infusion medication with micro needles in
the newest technology of diabetes treatment [97].

6. Conclusion

Diabetes mellitus and COVID-19 are the chal-
lenging diseases faced in recent days. New-onset
diabetes is one problem induced by SARS-CoV-2
infection in nondiabetic patients. ACE2 is the crit-
ical key factor that possibly plays a vital role in
new-onset diabetes, as DM and COVID-19 are
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interrelated with ACE2 in molecular pathogenesis.
Treatments in acute hyperglycemic conditions are
still controversial since there are still discrepancies
regarding the results in the field. A careful decision
based on the patient's current clinical condition and
comorbidities is needed to make rational choices of
treatment, which could then provide a precise and
good outcome.
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