Honorary Editorial & Advisory Board

<table>
<thead>
<tr>
<th>Name</th>
<th>Institution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dr. Parsu Budathoki</td>
<td>RMIT University, Melbourne, Australia</td>
</tr>
<tr>
<td>Dr. P.K. Sinha</td>
<td>Bangalore University, Bangalore, India</td>
</tr>
<tr>
<td>Dr. Nazia Khan</td>
<td>National University of Sci. & Tech., Islamabad, Pakistan</td>
</tr>
<tr>
<td>Dr. Mahendra Dhillon</td>
<td>PES College, Bangalore, India</td>
</tr>
<tr>
<td>Dr. Krishnendra Singh Nama</td>
<td>Sr. Lecturer, Dept. of Botany, M.B. PG College Career Point University, Kota, Rajasthan, India</td>
</tr>
<tr>
<td>Dr. Santanu Sarma</td>
<td>Ass. Professor, Dept. of Zoology Bholanath College, Dhubri-783324, Assam, India</td>
</tr>
<tr>
<td>Dr. Manjul Mishra</td>
<td>Head and Lecturer, Dept. of Chemistry M. D. Mission College Keshavpura, Kota, Rajasthan, India</td>
</tr>
<tr>
<td>Dr. Shivali Kharoliwal</td>
<td>Head and Lecturer, Dept. of Botany Lzebra Girls College Dadabari, Kota, Rajasthan, India</td>
</tr>
<tr>
<td>Dr. V. Raja Pendy</td>
<td>Madurai Kamaraj University, Madurai</td>
</tr>
<tr>
<td>Dr. Wreeda De Souza</td>
<td>University of Florida, USA</td>
</tr>
<tr>
<td>Dr. Becky Finos</td>
<td>Associate Professor, Deptt. of Biotechnology, Heilbronn University, Germany</td>
</tr>
<tr>
<td>Dr. Monjit Saikia</td>
<td>Associate Professor & HOD, Deptt. of Botany, Hojai College, Hojai, Nagaon, Assam, India</td>
</tr>
<tr>
<td>Dr. Jeeva. S</td>
<td>Head and Ass. Professor, Dept. of Microbiology Udaya College of Arts and Science, Vellamodi, Tamilnadu, India</td>
</tr>
<tr>
<td>Dr. Subha Ganguly</td>
<td>Scientist & P.I, Sub-Projects, AICRP On PHT (ICAR) Faculty of Fishery Sci., West Bengal University of Animal and Fishery Sciences, IC</td>
</tr>
<tr>
<td>Dr. Madhumati Bora</td>
<td>Head (Biotechnology, Genetics and Bioinformatics) N.V. Patel College of Pure & Applied Sciences, Vallabh Vidyangar, Anand -388120, Gujarat, India</td>
</tr>
</tbody>
</table>

Editor

Dr. Jitendra Mehta
Head and Scientist, Dept. of Biotechnology & Microbiology, Vital Biotech, Kota
Faculty of Biology, Lzebra Institute, Career Point University, Kota, Rajasthan, India

Contact us

Feel free to contact us on any of the mail ids:
info@ijpab.com, submitijpab@gmail.com or editor@ijpab.com submit@ijpab.com
Abstracting and Indexing Databases

- Scientific Indexing Services
- Citefactor
- Directory of Research Journal Indexing
- SJIF Journals Master List
- Google Scholor
- Global Impact Factor
- (ISI) International Scientific Indexing
- International Society of Universal Research in Sciences
- IndianScience.in
- ResearchBib
- (IFSIJ) Impact Factor Services for International Journals
- Cosmos Impact Factor
- (IIJIF) International Innovative Journal Impact Factor
Influence of certain cultural practices and variable climatic factors on the manifestation of Spilocaea oleagina, olive peacock spot agent in the northwestern region of Morocco
Youssef Rhimini, Mohamed Chliyeh, Abdellatif Ouazzaoui Chahdi, Jihane Touati, Amina Ouazzani Touhami, Rachid Benkirane and Allal Douira
Page No: 1-9
Laboratoire de Botanique et de Protection des Plantes, UFR de Mycologie, Département de Biologie, Faculté des Sciences BP. 133, Université Ibn Tofail, Kénitra, Maroc

Isolation of Cellulolytic Bacteria from Rumen Liquit of Buffalo Both as a Probiotics Properties and has Cmc-Ase Activity to Improve Nutrient Quality of Soybean Distillery By-Product as Feed
Igusti Nym. Gde Bidura, Ni Wayan Siti, Dan Ida Ayu Putri Utami
Page No: 10-18
Faculty of Animal Science, Udayana University, Denpasar-Bali, Indonesia, Jl. PB. SoEdirman, Denpasar

Arising Model Organism Nervous System in C. elegans Biology: A Survey
Maha Tareq Al-Mhanawi and Wu Zhengxing
Page No: 19-27
Key Laboratory of Molecular Biophysics of Ministry of Education, School of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China

Evaluating antifungal effects of Myrtus communis nano-essence VS Terbinafine 1% Topical cream in guinea pig infected by Microsporum canis
Chaharbaradari Mojtaba, Mashhady rafie siyamak and Bayat Mansour
Page No: 28-35
Department of small animal medicine and surgery, Science and research branch, Tehran, Iran

Optimising Rumen Function of Bali Cattle Fed Ration Based on Agriculture By-Products with Supplementation of Multivitamins-Minerals
Page No: 36-45
Faculty of Animal Husbandry, Udayana University, Denpasar, HP. 081338791005

Bibliographic Inventory of the Olive Tree (Olea europaea L.) Fungal Diseases in the World
Mohamed Chliyeh, Jihane Touati, Karima Selmaoui, Amina Ouazzani Touhami, Abdelkarim Filali-Maltouf, Cherkaoui El Modafar, Abdelmajid Moukhli, Rachid Benkirane and Allal Douira
Page No: 46-79
Laboratoire de Botanique et de Protection des Plantes, UFR de Mycologie, Département de Biologie, Faculté des sciences BP, 133, Université Ibn Tofail, Kenitra, Maroc
Indigenous Medicinal Plant Knowledge of Cough or Bronchial Problems in Goalpara District (N.E. India)
Kishor Deka and Namita Nath
Page No: 80-87
Department of Botany, Goalpara College, Goalpara-783101, Assam

Scientific Evaluation of Ayurvedic Compound Formulation Dhanvapanchaka Kvatha Curna
Manoj Tripathi, Neelesh Dwivedi, Ashok Tiwari, Pawan Ahirwar, Aakanksha Tiwari and Saurabh Pathak
Page No: 88-93
Arogyadham, JRD Tata Foundation for Research in Ayurveda & Yoga Sciences, Deendayal Research Institute, Chitrakoot, Satna, M.P.

Seasonal Influence on Seed Yield of Jute (Corchorus capsularis L.) under Krishna Agro-Climatic Conditions of Andhra Pradesh
M. Ratnam and E. Naraayana
Page No: 94-96
Regional Agricultural Research Station, Lam Farm, Guntur-522 034, Andhra Pradesh, INDIA

Phosphate Solubilizing Rhizobia Promote the Growth of Chickpea under Buffering Conditions
Sachin Singh, Govind Gupta, Ekta Khare, K.K. Behal and Naveen K. Arora
Page No: 97-106
Department of Environmental Microbiology, BBA University, Lucknow-226025

Application of Local Health Traditional Knowledge in Oral Health and Hygiene among the Ethnic tribes of Nalbari and Barpeta Districts of Western Assam (North East India)
Kishor Deka and Namita Nath
Page No: 107-114
Department of Botany, Goalpara College, Goalpara-783101, Assam

Intra-Dialysis Complications among Hemodialysis Patients. - A Case Study
Appandraj R. Aravind Kumar Baskaran and Ushaskehar
Page No: 115-117
Assistant professor Department of Physiology, Melmaruvathur Adhiparasakthi Institute of Medical Sciences, Melmaruvathur -603319

Ecotoxicological effects of iron on the activities of antioxidant enzymes in Safflower (Carthamus tinctorius L.) seedlings
A. G. Devi Prasad, Sh. Rahimpouran and Komala H. P.
Page No: 118-123
Department of Studies in Environmental Science, University of Mysore, Manasagangotri Mysore, 570006, Karnataka, India

Effects of pollution on hydro-chemical and water quality assessment of the Ismailia Canal water, Egypt
Engy Elhaddad
Page No: 124-131
National Institute of Oceanography and Fisheries, Egypt
Six Sigma: An Emerging Approach in Pharma Industry
Pallavi T. Kare, Neha J. Bhor, Snehal E. Bhusare and Rakesh A. Chaudhari
Page No: 132-138
Department of pharmaceutics, MVP Samaj’s College of Pharmacy, Nashik

Clinical Scenario of *Helicobacter pylori* associated dyspepsia among rural population in a tertiary health care centre
T.K.V. Sharavanan, E. Premalatha, and N. Dinakaran
Page No: 139-143
Department of General Medicine, Melmaruvathur Adhiparasakthi Institute of Medical Sciences and Research. Melmaruvathur - 603319

Multifunctional Excipients: The Smart Excipients
Neha J. Bhor, Snehal E. Bhusare and Pallavi T. Kare
Page No: 144-148
Department of pharmaceutics, MVP Samaj’s College of Pharmacy, Nasik 02

Medicinal Properties of Honey: A Review
Ishan Ullah Khan, Widhi Dubey and Vedprakash Gupta
Page No: 149-156
School of Pure and Applied Science, JECRC University, Jaipur-303905, Rajasthan

Studies on Genitalia of *Culex univittatus* Theobald and *Culex bitaeniorhynchus* Giles with the Aid of Scanning Electron Microscope
Jagbir Singh Kirti, Jasneet Kaur and Shipali
Page No: 157-162
Department of Zoology and Environmental Sciences, Punjabi University, Patiala- 147002

Effect of the Arbuscular Mycorrhizal Fungi on the Growth and Root Development of Selected Plant Species Suggested for Slope Revegetation
Jihane Touati, Mohamed Chliyeh, Amina Ouazzani Touhami, Rachid Benkirane, and Allal Douira
Page No: 163-177
Laboratoire de Botanique et de Protection des Plantes, UFR de Mycologie, Département de Biologie, Faculté des Sciences BP. 133, Université Ibn Tofail, Kénitra, Maroc

Diversity of arbuscular mycorrhizal fungi in the rhizosphere of *Olea europaea* in three regions of Morocco (Tafilalt, Zagora and Taounate)
Warda Kachkouch, Jihane Touati, Amina Ouazzani Touhami, Abdelkarim Filali-Maltouf, Cherkaoui El Modafar, Abdelmajid Moukhli, Ahmed Oukabli, Rachid Benkirane and Allal Douira
Page No: 178-195
Laboratoire de Botanique et de Protection des Plantes, UFR de Mycologie, Département de Biologie, Faculté des Sciences, BP. 133, Université Ibn Tofail, Kénitra, Maroc

Total Carbohydrates and Economic Parameters of *Bombyx mori* under the Influence of Zinc Chloride-Enriched Mulberry Diet
Kavitha Sampath, Sivaprasad Srinivasamurthy, Bano Saidullah and Yellamma Kuna
Page No: 196-202
Genetic Variability Analysis in Rice (Oryza sativa L.)
N. Lingaiah, V. Venkanna and C. Cheralu
Page No: 203-204
Regional Agricultural Research Station, Warangal – 506 007, Telangana State

Botanical Composition of forage by Timor Deer (Cervus timorensis Balinville) in A Monsoon Forest and Savanna of West Bali National Park
Ketut Ginantra, Sentana Putra, Wayan Suarna and Wayan Kasa
Page No: 205-213

Quality by Design (QBD) Approach used in Development of Pharmaceuticals
Jyotsna Balasaheb Jadhav, Nitin NamdeoGirawale and Rakesh Ashok Chaudhari
Page No: 214-223
Department of Quality Assurance Techniques, M.V.P. Samaj’s College of Pharmacy, Near K.T.H.M. Campus, Gangapur road, Nashik-422002, Maharashtra, India

Current Status of Vulture Population in Chambal Valley of Kota, Rajasthan
Satyadeo Kumar, Harimaohan Meena, Pramod Kumar Jangid and Krishnendra Singh Nama
Page No: 224-228
Department of Life Science, Career Point University, Kota (Rajasthan)

Seedling Morphology of Endangered Eremostachys superba Royle ex Benth. (Lamiaceae)
Vijai Malik, Seema Anand and Inam Mohammad
Page No: 229-232
Department of Botany, M. S. College, Saharanpur U.P. India

Biomonitoring of dust pollution of road side of Harda using Air Pollution Tolerance Index (APTI)
Aruna Jain and C. Sreelatha Kutty
Page No: 233-238
Govt. College, Timarni, Harda, M.P.

Singhabahini Sacred Grove A 1000 Years Old Sacred Grove Represents Nature Made Nursery of Forest Plants for Future Study
Debabrata Das
Page No: 239-245
Post Graduate Deptt. Of Botany, Darjeeling Govt. College, Darjeeling, West Bengal, India

The Preference of Butterflies for Nectarine Food Plants
Alma E. Nacua, Gerard Q. de Guzman and Grecebio Jonathan D. Alejandro
Page No: 246-250
Thomas Aquinas Research Complex, University of Santo Tomas, España Blvd., Sampaloc,1015 Manila, Philippines
ABSTRACT
A research has been carried out to optimize the rumen function and the rumen microbial protein synthesis in Bali Cattle (Steer). Sixteen Bali cattle were used in this experiment with Completely Randomized Block Designed four treatments and four blocks. The first treatment was ration based on agriculture by products without supplementation (R₀), while the other three treatments were supplemented with 0.075% (R₁), 0.150% (R₂) and 0.225% (R₃) multivitamins-minerals. The variables of rumen microbial protein synthesis including urinary excretion of allantoin, purin derivatives absorption, rumen microbial protein synthesis and efficiency of rumen microbial protein synthesis, Feed and nutrients degradation on the rumen, pH, concentration of NH₃-N, VFA and amount of protozoa in the rumen fluid were measured in the experiment. The result showed that rumen microbial protein synthesis and amount of microbial purines absorbed in supplementation of 0.150% (R₂) and 0.225% (R₃) multivitamins-minerals were significant difference (P<0.05) compared with without supplementation (R₀) (222.83 and 222.24 gram/day Vs 197.83 gram/day) and (49.45 and 49.35 Vs 44.76 mmol/day), but they were not significantly different with without supplementation on rumen microbial protein synthesis (213.57 gram/day) and on amount of microbial purines absorbed (48.67 mmol/day). Degradable organic matter and Sulfur absorbed in the rumen, amount protozoa, and ruminal pH, concentration of NH₃-N, totally VFA and propionate acids of rumen fluid significantly (P<0.05) increased as well. Increasing supplementation until 0.15% (R₂) multivitamins-minerals were decreased concentration of acetate acid, butirate acid and methane gas production compare with without supplementation, but increasing until 0.225% supplementation of multivitamins-minerals (R₃) increased concentration of butirate acid and methane gas production. Moreover, regression analyzed showed that supplementation of multi vitamins-minerals of 0.188% coused maximum rumen microbial protein synthesis of 223.39 gram/day. It was concluded that rumen microbial protein synthesis of Bali cattle given ration based on ammoniated rice straw could be increased as maximum 12.92%. The level optimal multivitamins-minerals supplementation used in this experiment was 0.188%.

Key words: Agriculture by-products, Bali cattle, Multivitamins-minerals, Microbial Protein Synthesis, Rumen Function.
Microbial protein synthesized in the reticulo-rumen constitutes almost the only source for protein digestion in the small intestine on the animals given feeds with such low quality fibrous diets like as agricultural by product19. That ways better strategies minded national program to support feed security especially ruminants feed focused on optimise use agriculture waste and agro-industry by products as feed12.

The maximum potential of rumen microbes to produce microbial protein and degraded nutrients in the rumen can be explored only by the provision of high quality diet27, so increasing rumen function in cattle fed ration based on agriculture by product like as rice straw should be focused on strategies for through many problems especially deficiency nutrient and low digestibility at that feed materials. Applied urea ammoniation technologies verified can increased digestible rice straw6,22, in spite of inadequacy micro-nutrients such as minerals Ca, P, Mg, Cu, Zn, Mn, Co, Fe, S, and vitamins A, D; and E can not increased7.

Multivitamin-minerals supplementation of cattle given ration base on waste is one of the best strategy a farmer can make. That statements founded on vitamins and minerals are important factor to affected the effectivity rumen fermentation and efficiency of microbial protein synthesis14.

Minerals and vitamins supplement to enhance fermentative digestion and microbial growth efficiency in the rumen of cattle on poor quality feed. The macro-minerals (Ca, P and Mg), micro-minerals (Cu, Co, Zn, Mn, Fe and S) and multi-vitamin (especially Vitamin A and E) most important to rumen fermentation activity, feeds degradation, and microbial protein synthesis17. The levels of sulfur and ammonia in rumen fluid which maximize digestibility of fibrous carbohydrates appear to be 1–2 mg S/l and 50–80 mg ammonia N/l respectively, whereas maximum microbial growth efficiency seems to require 4–10 mg S/l and 150–200 mg ammonia N/l respectively17. Even though, Bal and Özturk3 showed optimise rumen microbial protein synthesis needed 1.6 – 1.9 g Sulfur/kg organic matter digested with N/S ratio 18.5:1. Limited intake of sulfur may restrict rumen activity and microbial protein synthesis when large amounts of non-protein nitrogen are fed to ruminant animals, such as urea or effect given urea ammoniated feeds14.

In spite of, given fed with very high sulfur can decreased fed consumsion, respiration stress even death21. Phosphorus is another mineral required for the synthesis of ATP and protein by rumin microbes. Microbial protein synthesis can be limited by an insufficient supply of P for microbial growth. Parakkasi21 describe the mineral zinc (Zn) as components and activator of any enzyme such as deyidrogenase, peptydase and fosfatase with functions at nucleat acid metabolisms, carbohydrate metabolisms and protein synthesis. Rumen microbes needed 130-220 mg Zn/kg for optimise microbes growth and yields. Other minerals such as Ca, Mn, Fe, Co and Cu also important for microbial protein synthesis, synthesis of ATP and vitamins B, microbes activities, nutrient degradable14,21. Supply of vitamins A and E important on given ration based on urea ammoniated rice straw because that materials deficiencie6. Vitamins A and E function for microbes growth especially microbial protein synthesis and energy supply for microbes activities21. Supply of vitamins B-complex also important couse low of supply mineral precursor finding that vitamin such as minerals S or Co on feed material.

This experiment was conducted to determine the best level of multivitamins-minerals supplementation in the fermentation process on ration based on agriculture by-product that could increase of rumen function to degrade nutrients, produce high quality of rumen metabolic product, and increase supply of nutrients for host animal. The research results are expected to give early illustration of science and technology development especially in optimizing the utilization of local resources based on agriculture by-product feedstuffs to support feed security of ruminant production.

MATERIALS AND METHODS

Location, Animals, Diet and Experimental Design

A research has been carried out at farm of “Nandi Abian” farmers group association, Abianbase of Gianyar Regency used sixteen Bali cattle mean body weight 244.19 ± 33.78 kg. They were kept in feedlot pens (individual concrete pens) on site for duration of the study. This experiment was run for 12 weeks at the farm and continuously laboratory experimental for data analysis at Animal Nutrition Laboratory, Faculty of Animal Husbandry and Analytic Laboratory, Udayana University.
This experiment used a Completely Randomized Block Designed with four treatments and four blocks based on body weight of cattle. The treatment were as follows:

- **R₀**: Basal Ration without supplemented multivitamins-minerals
- **R₁**: R₀ were supplemented with 0.075% multivitamins-minerals
- **R₂**: R₀ were supplemented with 0.150% multivitamins-minerals
- **R₃**: R₀ were supplemented with 0.225% multivitamins-minerals

Basal ration composed by urea ammoniated rice straw and agroindustry by product. Ration and water provided *ad libitum*. Materials Feedstuffs and Nutrient composition can see at Table 1 and 2.

Table 1. Material Composition of Ration Experimental

<table>
<thead>
<tr>
<th>Feedstuffs Composition</th>
<th>R₀ (%)</th>
<th>R₁ (%)</th>
<th>R₂ (%)</th>
<th>R₃ (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Urea Ammoniated Rice Straw</td>
<td>25.00</td>
<td>25.00</td>
<td>25.00</td>
<td>25.00</td>
</tr>
<tr>
<td>Pollard</td>
<td>34.00</td>
<td>33.966</td>
<td>33.932</td>
<td>33.898</td>
</tr>
<tr>
<td>Coconut Meal</td>
<td>25.00</td>
<td>24.975</td>
<td>24.950</td>
<td>24.925</td>
</tr>
<tr>
<td>Sugarcane</td>
<td>6.00</td>
<td>5.994</td>
<td>5.988</td>
<td>5.982</td>
</tr>
<tr>
<td>Coconut Oil</td>
<td>5.00</td>
<td>4.995</td>
<td>4.990</td>
<td>4.985</td>
</tr>
<tr>
<td>Limestone (CaCO₃)</td>
<td>2.00</td>
<td>1.998</td>
<td>1.996</td>
<td>1.994</td>
</tr>
<tr>
<td>Urea</td>
<td>1.00</td>
<td>0.999</td>
<td>0.998</td>
<td>0.997</td>
</tr>
<tr>
<td>Salt</td>
<td>2.00</td>
<td>1.998</td>
<td>1.996</td>
<td>1.994</td>
</tr>
<tr>
<td>Pignox</td>
<td>0.00</td>
<td>0.075</td>
<td>0.150</td>
<td>0.225</td>
</tr>
<tr>
<td>Total</td>
<td>100.00</td>
<td>100.00</td>
<td>100.00</td>
<td>100.00</td>
</tr>
</tbody>
</table>

Table 2. Nutrient Compositions of Ration Experimental

<table>
<thead>
<tr>
<th>Nutrient (%)</th>
<th>R₀</th>
<th>R₁</th>
<th>R₂</th>
<th>R₃</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dry Matter (%)</td>
<td>89.420</td>
<td>89.420</td>
<td>89.420</td>
<td>89.420</td>
</tr>
<tr>
<td>Organic Matter (%)</td>
<td>83.728</td>
<td>83.663</td>
<td>83.598</td>
<td>83.533</td>
</tr>
<tr>
<td>Crude Protein (%)</td>
<td>14.596</td>
<td>14.584</td>
<td>14.572</td>
<td>14.559</td>
</tr>
<tr>
<td>Crude Fibre (%)</td>
<td>12.211</td>
<td>12.211</td>
<td>12.207</td>
<td>12.202</td>
</tr>
<tr>
<td>Gross Energy (Mkal)</td>
<td>3.888</td>
<td>3.885</td>
<td>3.882</td>
<td>3.878</td>
</tr>
<tr>
<td>Ca (%)²</td>
<td>1.348</td>
<td>1.347</td>
<td>1.346</td>
<td>1.345</td>
</tr>
<tr>
<td>P (%)²</td>
<td>0.450</td>
<td>0.449</td>
<td>0.449</td>
<td>0.449</td>
</tr>
<tr>
<td>S (%)²</td>
<td>0.300</td>
<td>0.303</td>
<td>0.305</td>
<td>0.308</td>
</tr>
<tr>
<td>Zn (%)²</td>
<td>0.015</td>
<td>0.016</td>
<td>0.018</td>
<td>0.019</td>
</tr>
<tr>
<td>N/S ratio</td>
<td>7.785</td>
<td>7.709</td>
<td>7.634</td>
<td>7.561</td>
</tr>
</tbody>
</table>

Reference:
1) Analysis by Animal Nutrition Laboratory, Faculty of Animal Husbandry, Udayana University, and
2) Analysis by Analitic Laboratory, Udayana University

Data Collection, Sampling Procedure and Analysis

Parameters observed on this research are the variable of rumen microbial protein synthesis (MPS), including urinary excretion of allantoin, purin derivatives absorption, rumen microbial protein synthesis and efficiency of rumen microbial protein synthesis (E\textsubscript{MPS}), feed and nutrients (DM, OM, CF, CP, Ca, P, S and Zn) degradation/absorption on the rumen, pH, concentration of NH\textsubscript{3}-N, Totally VFA, Partial VFA (Acetate Acids, Propionate Acids and Butirate Acids) and amount of protozoa in the rumen fluid.

Feed were randomly collected and fecal samples were taken from total collection of individual cattle during the last 7 day of the study. They were analyzed for chemical composition such as DM, ash, CP and CF contents with proxymate analyzed2, and concentrations of minerals Ca (with EDTA method), S (Iodometry method), P and Zn (with Atomic absorption Spectrophotometre/AAS).

At the end total collection period, rumen fluid samples were collected at 4 hours post feeding. Approximately 200 ml of rumen fluid was taken from the middle part of the rumen by using a hand vacuum pump.
Rumen fluid was immediately measured for pH using a portable pH meter (HANNA instrument HI 9025). Concentration of NH3-N in rumen fluid was calculated with using the phenolhypoclorite method. Totally Volatile Fatty Acid (VFA) from Acetate, Propionate, and Butyrate analyses were used with a high performance liquid chromatography (HPLC) technique. The total direct count of protozoa in rumen fluid was counted using the MFS solution in a counting chamber/hemocytometer18.

Urine samples were analyzed for allantoin in urine was determined by HPLC as described by Partama22. The amount of microbial purines absorbed (\(X\) mmol/day) corresponding to the purine derivatives excreted (\(Y\) mmol/day) was calculated based on the relationship derived by Bowen4:

\[
Y = 0.85X + 0.190W^{0.75}
\]

Where: \(Y\) is the excretion of purine derivatives (mmol/day), \(X\) is the microbial purines absorbed (mmol/day), 0.190 \(W^{0.75}\) is the contribution of endogenous purine each kg metabolic body weight from Bos indicus.

The supply of microbial protein in gram per day was estimated as follows:

\[
\text{Microbial Protein (gram/day)} = \frac{70X}{0.116 \times 0.83 \times 1000} \times 6.25
\]

With \(X\) being the absorption of purine derivatives in mmol/day, digestibility of microbial purine is 0.83, the N content of purines is 70 mg N/mmol and the ratio of purine-N : total N in mixed rumen microbes is 11.6:100, the conversion factor N to Protein is 6.25.

The \(E_{\text{MPS}}\) which denotes the microbial protein supplied to the animal per unit of DOMR was calculated using the following formula:

\[
E_{\text{MPS}}(\text{g/1000 DOMR}) = \frac{MP (\text{g/day})}{\text{DOMR (g)}} \times 1000
\]

Where: DOMR = DOMI x 0.65 (ARC, 1990 cited by Khampa and Wanapat16), DOMR = digestible organic matter apparently fermented in the rumen, DOMI = digestible organic matter intake, \(E_{\text{MPS}}\) = efficiency microbial protein synthesis.

Statistical Analysis

Data Collecting were analyzed by Analysis Variance (ANOVA) and continued with Honestly Significant Difference test (HSD-test) if necessary26. Contrapositive analysis was used for optimum supplemented multivitamins-minerals.

RESULTS AND DISCUSSION

Effect on Degradable Nutrients on Rumen

The degradable nutrients and absorbed micro-nutrients (minerals) on rumen are presented in Table 3. Degradable organic matter, Sulfur absorbed and N:S ratio on rumen were affected (\(P<0.05\)) by multivitamins-mineral supplementation, while degradable DM, CP, CF, energy and absorbed Ca, P and Zn on rumen were similar in all treatments. Degradable organic matter and S absorbed on rumen were significantly higher (\(P<0.05\)) in Bali cattle fed R\textsubscript{3} (2078.10 g/d and 8.66 g/d) than in R\textsubscript{0} (1846.32 g/d and 6.88 g/d) while N: S ratio on rumen was significantly lower (\(P<0.05\)) in Bali cattle fed R\textsubscript{3} (6.81) than in R\textsubscript{0}, R\textsubscript{1} or R\textsubscript{2} (7.78; 7.83; 8.26).

Similar degradable nutrients on rumen (except organic matter and S absorbed) were affected by quality of ration given. In general, rate of digestion nutrient on rumen is the major factor controlling the energy available for growth of rumen microbes8. Furthermore, nutrient composition of all ration were similar (Table 2).
Significantly degradable organic matter and S absorbed on rumen by supplementation of 0.225% multivitamins-minerals show increasing effectivity of rumen microbes especially rumen bacteria where showed by high microbial protein yield were similar with R2 but higher (P<0.05) than R0 (Table 5) and with lower (quantitative) amount protozoa than R2 (5.80x10^5 Vs 6.20x10^5 cells/ml) (Table 4). The low populated protozoa will increasing populated of bacteria and than increasing rumen degradable nutrients.

Effect on Amount Protozoa and Rumen Fermentation

Table 4 present amount protozoa and rumen fermentation characteristic. As for amount protozoa, supplementation of 0.150% multivitamins-minerals (R3) increasing amount populations and 60% higher (P<0.05) than R0 but not significantly than R1 dan R2. Ruminal pH values were found in a range of 6.94 – 7.34 which were significantly different among treatment. The supplementation of R3 resulted in highest pH, while the supplementation at R0, R1 and R2 were similar among treatment. The supplementation at R1 and R2 also similarly with at R3. Ruminat pH rumen fluid in this study there are in the normally range pH like as reported by Owen and Goetsch (except at R3) are 5.5-7.2 and supplementation of multivitamins-minerals can as buffer for to prevent reduce pH as effect from increase bacteria population. Furthermore, normally ruminal animals depend on cellulolytic bacteriato digest cellulose, but these bacteria cannot resist the low ruminal pH and an increase in pH gradient leads to anion toxicity. In addition, most ruminal bacteria prefer pH near neutrality for growth although some species (e.g., *Streptococcus bovis* and *Prevotella ruminicola*) can growth in pH 5 to 6 ranges.

The concentration of ruminal ammonia-N (NH3-N) were significantly higher (P<0.05) in the R3 than in R0, but not significantly compared with R1 and R2. The supplementation of 0.075% (R1) and 0.150% (R3) multivitamins-minerals also result high concentration NH3-N but not significantly (P>0.05) compare with R0 (Table 4). The higher NH3-N concentration associated with high supplementation of multivitamins-minerals may have been due to increasing effectivity used N component from feeds by rumen microbes.

Zinc on multivitamins-minerals have been increasing microbes enzyme activities so that degradable protein process to peptide, oligopeptide, amino acids and ending to ammonia can produce with well. Furthermore, higher NH3-N concentration associated with high organic matter degradable on rumen may have been due to the continuous supply of new substrates from soluble fractions especially N-component.
production is surprising because reduced global warming risk and can positive for animal, farmer and environment.

Russell et al.

The higher allantoin absorbed and microbial protein supply in Bali cattle fed R0 (P<0.05) than those fed without supplementation of multivitamins-minerals (R0). The higher VFA concentration associated with high organic matter degradable on rumen (Table 3), protozoa populated (Table 4) and estimation bacteria populated (shown by high microbial protein synthesis, at Table 5). The higher propionate acids concentration on R1 as effect of high organic matter content with low crude fiber content on ration given (Table 2). The higher total VFA and propionate acids concentration in this study suggested by Hermawan10 were reported supplementation 0.05% ammonium sulfate and 0.03% pignox have been increasing totally VFA and propionate acids proportion on rumen.

The methane gas concentration on rumen fluid were significantly (P<0.05) by supplementation of multivitamins-minerals. Concentration of totally VFA and propionate acids in Bali cattle fed R2 were significantly higher (P<0.05) than those fed without supplementation of multivitamins-minerals (R0). The higher VFA concentration associated with high organic matter degradable on rumen (Table 3), protozoa populated (Table 4) and estimation bacteria populated (shown by high microbial protein synthesis, at Table 5). The higher rumen microbes have been increasing carbohydrate fermentation to produce VFA. Furthermore, the higher propionate acids concentration on R2 as effect of high organic matter content with low crude fiber content on ration given (Table 2). The higher total VFA and propionate acids concentration in this study suggested by Hermawan10 were reported supplementation 0.05% ammonium sulfate and 0.03% pignox have been increasing totally VFA and propionate acids proportion on rumen.

The methane gas concentration on rumen fluid were significantly (P<0.05) by supplementation of multivitamins-minerals on ration based on urea ammoniated rice straw. Concentration of methane gas production in Bali cattle fed R1 were significantly highest than the others treatment, while given fed R2 result lowest methane gas production (Table 4). This case may be happened as given fed R3 in Bali cattle to result minerals concentration on rumen highest so that negative responds for growth and rumen microbes activities. Furthermore, given fed R3 may be also to result run of secondary fermentation process so more reduction H2 molecule which used by Methanobacterium ruminantium and Methanobacterium mobilis to produce methane. Moreover, the lower methane gas concentration on rumen fluid at R1 and R2 are surprising, while show the optimizing bio process on rumen and reduced acidosis risk in Bali cattle. Furthermore, low methane production is surprising because reduced global warming risk and can positive for animal, farmer and environment.

Effect on Microbial Protein Supply

As shown in Table 5, the allantoin excretion in urine and efficiency microbial protein synthesis (E_MPS) in the rumen were not significantly (P>0.05) in all treatment with range 51.23 – 55.76 mmol/d and 107.17 – 107.74 g/1000g DOMR, while the allantoin absorbed and microbial protein synthesis have been increased by supplementation of 0.150% - 0.225% multivitamins-minerals on ration. The higher allantoin absorbed and microbial protein supply in Bali cattle fed R2 and R3 may be due to synchronization of available fermentable energy and degradable nitrogen in rumen and also supply and availability trace mineral and vitamins as effect of supplementation multivitamins-minerals. Karsli and Russell14 reported in addition to N and carbohydrate supply, microbial yield is affected by concentration of trace minerals and vitamin. In addition, dietary sulfur concentration has been found to effect microbial growth.

Table 4. Influence of Multivitamins-Minerals Supplementation on amount protozoa and Rumen Fermentation Characteristic in Bali Cattle

<table>
<thead>
<tr>
<th>Item</th>
<th>R0</th>
<th>R1</th>
<th>R2</th>
<th>R3</th>
<th>SEM²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amount Protozoa (x 10⁹ cells/ml)</td>
<td>3.88ab</td>
<td>5.20bc</td>
<td>6.20b</td>
<td>5.80ab</td>
<td>0.51</td>
</tr>
<tr>
<td>Ruminal pH</td>
<td>6.94a</td>
<td>6.95a</td>
<td>7.23ab</td>
<td>7.34ab</td>
<td>0.09</td>
</tr>
<tr>
<td>NH3-N (mM)</td>
<td>5.33a</td>
<td>7.13b</td>
<td>7.89ab</td>
<td>8.98b</td>
<td>0.66</td>
</tr>
<tr>
<td>Total VFA (mM)</td>
<td>114.80a</td>
<td>117.09ab</td>
<td>120.08b</td>
<td>117.24ab</td>
<td>0.89</td>
</tr>
<tr>
<td>Partial VFA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acetate Acid (mM)</td>
<td>73.10b</td>
<td>72.90ab</td>
<td>72.24a</td>
<td>73.05ab</td>
<td>0.19</td>
</tr>
<tr>
<td>Propionate Acid (mM)</td>
<td>22.00c</td>
<td>26.70abc</td>
<td>29.40c</td>
<td>22.60ab</td>
<td>1.33</td>
</tr>
<tr>
<td>Butirate Acid (mM)</td>
<td>19.69a</td>
<td>17.49a</td>
<td>18.44a</td>
<td>21.58a</td>
<td>1.14</td>
</tr>
<tr>
<td>Concentration of Methane (mM)</td>
<td>40.90ab</td>
<td>38.52ab</td>
<td>37.99a</td>
<td>41.67b</td>
<td>0.83</td>
</tr>
</tbody>
</table>

Note: 1) R0 = Ration without multivitamins-minerals supplementation, R1 = Ration with 0.075% multivitamins-minerals supplementation, R2 = Ration with 0.150% multivitamins-minerals supplementation, and R3 = Ration with 0.225% multivitamins-minerals supplementation, 2) The same letter in same row is not significantly difference (P>0.05), 3) SEM = Standard Error of the Treatment Means.
The amount of sulfur required by rumen microbes for synthesis of methionine and cysteine range from 0.11 to 0.20% of the total diet, depending on the status of the cattle. Limited intake of sulfur may restrict microbial protein synthesis when large amounts of NPN are fed to ruminal animals, such as urea or urea were fixation in product urea ammoniated rice straw.

Table 5. Influence of Multivitamins-Minerals Supplementation on Microbial Protein Supply in Bali Cattle

<table>
<thead>
<tr>
<th>Items</th>
<th>Treatments</th>
<th>SEM1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>R$_0$</td>
<td>R$_1$</td>
</tr>
<tr>
<td>Allantoin excretion (mmol/d)</td>
<td>51.23ac</td>
<td>55.13a</td>
</tr>
<tr>
<td>Allantoin Absorbed (mmol/d)</td>
<td>44.76a</td>
<td>48.67ab</td>
</tr>
<tr>
<td>Microbial Protein Synthesis (g/d)</td>
<td>197.83a</td>
<td>213.57ab</td>
</tr>
<tr>
<td>E$_{MPS}$ (g/1000 g DOMR)</td>
<td>107.17a</td>
<td>107.36a</td>
</tr>
</tbody>
</table>

Note: 1) R0 = Ration without multivitamins-minerals supplementation, R$_1$ = Ration with 0.075% multivitamins-minerals supplementation, R$_2$ = Ration with 0.150% multivitamins-minerals supplementation, and R$_3$ = Ration with 0.225% multivitamins-minerals supplementation, 2) The same letter in same row is not significantly difference (P>0.05), 3) SEM = Standard Error of the Treatment Means.

Similar of the Allantoin excretion and efficiency protein microbial synthesis (E$_{MPS}$) of Bali cattle fed ratio based on urea ammoniated rice straw were 51.23 – 55.76 mmol/day and 107.17 – 107.74 g/1000g DOMR shown Bali cattle can be adaptation of environment as well. Moreover, that are may be as effect of increasing populated of protozoa in Bali cattle fed ration with supplementation of multivitamins-mineral especially R$_3$ (Table 4). High populated protozoa on rumen can take advantages and disadvantages. Protozoa on rumen can increase protein degradable, supply ammonia nitrogen (NH$_3$-N) on rumen and reduce acidosis risk, in spite of high populated of protozoa also can decrease the number of bacteria and fungi in the rumen liquor as effect protozoa is a predator of bacteria. Bacteria are sources of nitrogen/protein of protozoa. So protein microbial synthesis can be decrease of high populated protozoa and efficiency microbial protein synthesis on digestible organic matter apparently fermented in the rumen can be reduced.

Generally, efficiency microbial protein synthesis (E$_{MPS}$) in the rumen of Bali cattle given ration based on urea ammoniated rice straw with supplementation of multivitamins-minerals were enough (107.36-107.42 g PMS/1000g DOMR). This is surprising because Bali cattle were supplemented of multivitamins-minerals on ration based on urea ammoniated rice straw have a much better Allantoin excretion from dairy cattle fed cottonseed meal at 0.5 kg/head/day and urea-treated rice straw was offered ad lib. with supplementation of corn meal and cassava chip as energy sources and with vary levels were result 28.1 – 45.8 mmol/d16, in spite of lower than Allantoin excretion of crossbreed (Brahman Vs Local) given urea treated rice straw with supplemented 1-3% per metabolic body weight (BW$^{0.75}$) concentrate which result 130.7 – 244.6 mmol/d28.

The E$_{MPS}$ of Bali cattle given ration based on urea ammoniated rice straw with supplementation of multivitamins-minerals was 107.17 – 107.74 g MP/1000g DOMR equal with 69.51 – 69.97 g MP/1000g DOM or 17.27 – 17.78 g N/kg DOMR were there in range values E$_{MPS}$ fattening cattle reported Karsli and Russell14,15 were 70–237g MPS/1000g DOMR. This is surprising because ration based on urea ammoniated rice straw have a much better E$_{MPS}$ from crossbreed cattle (Brahman Vs Local) were given fed various of energy source and level supplementation which calculate 4.3 – 10.7 g N/kg DOMR16.
Generally, relation supplementation of multivitamins-minerals with rumen microbial protein synthesis in Bali cattle given ration based on urea ammoniated rice straw following regression formula: $Y = 197.67 + 273.29X - 725.78X^2$, where $R^2 = 0.4697$ (Picture 1), where $Y =$ rumen microbial synthesis (g/d), and $X =$ supplementation of multivitamins-minerals on ration. Based on that regression analyses known that supplementation of multi vitamins-minerals of 0.188% caused maximum rumen microbial protein synthesis of 223.39 gram/day or maximum increased 12.92%.

CONCLUSION

Supplementation of multivitamins-minerals on ration based on ammoniated rice straw can increasing maximum microbial protein supply as 223.39 g PMS/day (increase 12.92%) with optimum supplementation are 0.188%.

Acknowledgement

The authors wish to thank to Faculty of Animal Husbandry Udayana University for support in this experiment. Thanks are also due to the Farmers Group Association “Nandi Abian” who help in feeding and looking after the animals during the period of experimentation. The Laboratory Staffs of the Faculty of Animal Husbandry for the assistance in analysing the sample of experimentation is also acknowledge.

REFERENCES

